DUNE The Next Generation Neutrino Experiment

Alfons Weber

Physics at the Terascale 14th Annual Meeting of the Helmholtz Alliance November 2021

DUNE General Setup

- LBNF/DUNE will consist of
 - An intense v-beam fired from Fermilab 1.2 MW upgradeable to 2.3 MW
 - Highly capable near detector complex
 - A >20 kt fiducial mass LAr TPC far detector underground at SURF
 - A cavern for a full 40 kt detector system

The DUNE Collaboration

- International Collaboration
 - 1350 members
 - 200+ Institutions
 - 34 countries & CERN

DUNE Physics Program

- Neutrino Oscillations
 - Search for leptonic CP violation
 - Determine neutrino mass ordering
 - Precision PMNS measurements
- Supernova Physics
 - Observation of time and flavour profile provides insight into collapse and evolution of supernova
 - Unique sensitivity to electron neutrinos

- Baryon number violation
 - Predicted by many BSM theories
 - LAr TPC technology well-suited to certain proton decay channels (*e.g.*, $p \rightarrow K + \nu$)
 - $\Delta(B-L) \neq 0$ channels accessible (*e.g.*, $n \rightarrow \overline{n}$)

https://www.particlezoo.net/

Neutrinos

Neutrino-Mixing: The PMNS Matrix

- Neutrinos have mass (BSM)
 - mass eigenstates ≠ weak interaction eigenstates
 - Analogue to CKM-Matrix in quark sector!

Mass Ordering (Hierarchy)

Neutrino Oscillations for Dummies

$$V_{\mu} \qquad V_{\mu} \text{ or } V_{\tau}$$

$$V_{\mu} \text{ or } V_{\tau}$$

- Measure prob.
 - Survival
 - Appearance
- Result
 - Mixing angle
 - Mass differences

Matter Effects

- Simplified treatment: two neutrinos only
- In vacuum

$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2}(2\theta)\sin^{2}\left(\frac{\Delta m^{2}L}{4E}\right)$$

in matter

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2}(2\theta_{m})\sin^{2}\left(\frac{\Delta m_{m}^{2}L}{4E}\right)$$

with $\sin(2\theta_{m}) = \frac{\sin(2\theta)}{\sqrt{(\cos 2\theta - A)^{2} - \sin^{2}(2\theta)}}$
$$\Delta m_{m}^{2} = \Delta m^{2}\sqrt{(\cos 2\theta - A)^{2} - \sin^{2}(2\theta)}$$
$$A = \pm \frac{2\sqrt{2}G_{F}N_{e}E}{\Delta m^{2}}$$

- Matter modifies oscillation probability
 - Sign of mass difference matters (opposite for anti-v)
 - Larger effect at higher energies

The Fully Monty

- Life isn't that easy
 - 3 Flavour oscillations & Matter effects
- The full formula

$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2}(2\theta)\sin^{2}\left(\frac{\Delta m^{2}L}{4E}\right)$$

$$P(\nu_{\mu} \rightarrow \nu_{e}) = 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2S_{13}^{2}\right)\right)$$

+8 $C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E}$
-8 $C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E}$
+4 $S_{12}^{2}C_{13}^{2}\left\{C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta\right\}\sin^{2}\frac{\Delta m_{21}^{2}L}{4E}$
-8 $C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}}{4E}\left(\frac{4L}{4E}\left(1 - 2S_{13}^{2}\right)\right)$

Making Accelerator Neutrinos

LBNF Neutrino Beam

- Design
 - optimised for CP sensitivity
 - Facility for 2.4 MW proton beam
- Carbon target
 - For Pion production
 - Can withstand 1.2 MW
- 3 Magnetic horns
 - Select pions of right polarity and energy
- Decay Pipe
 - 200 m
- Hadron Absorber

v., Flux, v Mode

Far Detector (LArTPC)

Why Liquid Argon ?

Dense: 40% denser than water

- Cheap: abundant (1% of atmos.)
- Ionizes easily: 55,000 electrons/cm
- Excellent scintillation: 20,000 photons/MeV (@ 500 V/cm)

Unmatched Imaging Details

Underground Laboratory SURF

DUNE Far Detector site

- Sanford Underground Research Facility (SURF), South Dakota
- Four caverns on 4850 level (~ 1 mile underground)

Ross Campus:

commenced in 2017

DUNE Far Detector

- 2x 17 kton LAr TPCs
 - Each 10 kton fiducial mass
- Space for up to 4 modules
- Excavation has started

ProtoDUNE @ CERN

ProtoDUNE Performance

Measuring Oscillations

Oscillation probabilities

$$P_{\nu_{\mu} \to \nu_{e}}(E_{\nu}) = \frac{\phi_{\nu_{e}}^{far}(E_{\nu})}{\phi_{\nu_{\mu}}^{far,no-osc}(E_{\nu})} = \frac{\phi_{\nu_{e}}^{far}(E_{\nu})}{\phi_{\nu_{\mu}}^{near}(E_{\nu}) * F_{far/near}(E_{\nu})}$$
Well known (1-2%)

Neutrino Interactions

- Tricky Problem
 - How to relate neutrino to measured energy?
 - Neutrino energy unknown
 - > Nuclear recoil not measurable
 - Nucleus will absorb some energy
- Charged and neutral particles
 - p from curvature in B-field
 - > Calorimetric energy for γ
 - > β from ToF of neutron (recoil)

What does the ND need to measure?

ND Fluxes

 $\phi_{\nu_x}^{near}(E_{\nu})$

- Prior constrained 5-10%
- Total and differential cross sections on Argon

 $\frac{d^n \sigma_{\nu_x}^{Ar}}{da \ db \ dc \ \dots} (E_{\nu}) \quad \text{(Largely unknown)}$

True to reconstruction "matrix"

 $T_{\nu_x}^{far}(E_{\nu}, E_{rec})$ and $T_{\nu_x}^{near}(E_{\nu}, E_{rec})$

Depends on

- Detector effects
- differential cross sections

The Near Detector Complex

- Four main components
 - 1. Liquid argon detector (ND-LAr)
 - 2. Downstream tracker with gaseous Ar-target (ND-GAr)
 - 3. ND-LAr and ND-GAr systems can move off-axis (**PRISM** concept)
 - 4. System for on-Axis Neutrino Detection (SAND)
- High statistics constrains
 - Cross section & neutrino flux

ND-LAr: Liquid Argon TPC

LAr TPC

- Study detector effects
- Similar to far detector technology
- High event rate
 - Need compartmentalisation
 - Pixelized readout

ND-GAr: Gaseous Argon TPC

- Main detector components
 - High pressure (10 bar) gas TPC
 - ECAL
 - SC magnet
- Interactions on Ar gas
- Can move off-axis

ECAL Performance

- Neutrino spectrum changes when going off-axis
- Direct linear combination of date at different positions to construct FD oscillated spectrum
- Need to understand detector differences and flux only

PRISM Analysis

SAND

- On-Axis Beam monitor (formerly KLOE)
 - ECAL & magnet
 - Straw-Tube-Tracker (CH₂-Target)
 - Small LAr Target (GRAIN)
- Task
 - Measure neutrino flux
 - Monitor beam stability

Event identification

Measurement Strategy

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2S_{13}^{2}\right)\right) \\ &+ 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \\ &- 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \\ &+ 4S_{12}^{2}C_{13}^{2}\left\{C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta\right\}\sin^{2}\frac{\Delta m_{21}^{2}L}{4E} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\left(1 - 2S_{13}^{2}\right) \end{split}$$

DUNE Sensitivity

Move quickly to potential *CP* violation discovery Rapid, definitive mass ordering determination (>5 σ)

Summary and Conclusion

- DUNE is an neutrino facility with an exciting physics program
 - Optimised for neutrino oscillation measurements
 - Precision parameter measurements
 - CP violation
 - mass ordering
 - Is the three neutrino paradigm correct?
 - Wider physics program
 - Baryon number violation
 - Supernova (& solar) neutrinos
 - Non-Standard Interactions
 - dark sector searches with Near Detector, …
- International Collaboration with strong support by funding agencies

Backup

High Energy Tune

- Can change the flux by changing
 - Target positions
 - Horns (shape, position, current)

- Physics
 - Tau appearance
 - NSI

Other Physics

atmospherics

atmospherics

- Dark matter
- Large extra dimensions
- Dark photons
- NS interactions

