

Latest News from Flavour Physics

Emi Kou (IJCLab-IN2P3)

14th annual meeting of Helmholtz Alliance @ DESY (remote) 23-24 November 2021

Introduction: Searching new physics in B physics

Flavour Physics within SM

In SM, the difference between mass and interaction basis explains, the GIM mechanism, the CP Violation! Very concise!

What has been confirmed?

Observed Quark masses

	1st generation	2nd generation	3rd generation
up type	up	charm	top
charge 2/3	2.2±0.5MeV	1.27±0.03GeV	173.21±0.87GeV
down type	down	strange	bottom
charge -1/3	4.7±0.5MeV	96±6MeV	4.18±0.04GeV
charged lepton charge -1	electron 0.511MeV	µ 105.7MeV	τ 1.78GeV
neutrinos	ν _e	ν μ	ν
charge 0	<2.0eV	<0.17eV	<18.2eV

Observed Quark mixing VCKM

- ✓ SM does not say anything about the Yukawa coupling so the masses and the couplings are not predictable.
- ✓ V_{CKM} has to be a 3x3 unitary matrix which includes only one complex phase.
- ✓ N.B. LHC and LCs can tell us the linearity of the masse and the Higgs coupling.

Vckm: Cabibbo– Kobayashi–Maskawa matrix

What has been confirmed?

Observed Quark masses

 ✓ SM does not say anything about the Yukawa coupling so the masses and the couplings are not predictable.
 ✓ V_{CKM} has to be a 3x3 unitary matrix which includes only one complex phase.

✓ N.B. LHC and LCs can tell us the linearity of the masse and the Higgs coupling.

Vckm: Cabibbo– Kobayashi–Maskawa matrix

What has been confirmed?

6

Successful explanation of flavour physics up to now! Hundreds of observables (including dozens of CPV) are explained by this single matrix.

Flavour Physics beyond SM

The indirect search of new physics through quantum effect: very powerful tool to search for new physics signal!

This very simple picture does not exist in most of the extensions of SM: suppression of the FCNC is NOT automatic and also extra CP violation parameters can appear.

SUSY: Quark and Squark mass matrices can not be diagonalized at the same time —> FCNC and CP violation Mutli-Higgs model, Left-Right symmetric model: Many Higgs appearing in this model —> tree level FCNC and CP violation Warped extradimension with flavour in bulk: Natural FCNC suppression though, K-K mixing might be too large due to the chiral enhancement

Flavour Physics beyond SM

The indirect search of new physics through quantum effect: very powerful tool to search for new physics signal!

This very simple picture does not exist in most of the extensions of SM: suppression of the FCNC is NOT automatic and also extra CP violation parameters can appear.

Existence of new particles

Excessive occurring of FCNC & CP violation process

Flavour Physics beyond SM

The indirect search of new physics through quantum effect: very powerful tool to search for new physics signal!

This very simple picture does not exist in most of the extensions of SM: suppression of the FCNC is NOT automatic and also extra CP violation parameters can appear.

Existence of new particles

Excessive occurring of FCNC & CP violation process

Legacy of B factories

B factories: e+e- circular collider with energy at $\Upsilon(4S)(\rightarrow BBbar)$

Legacy of B factories

Discovery of charm/bottom exotic bound states

			DC					
State	M, MeV	Γ , MeV	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status	§35 I SE
X(3872)	3871.69 ± 0.17	< 1.2	1^{++}	$B \to K(\pi^+\pi^- J/\psi)$	Belle $[1050, 1138]$ (>10),	2003	Ok	Belle S
X(387	21			$p\bar{p} \rightarrow (\pi^+\pi^- I/2/2)$	$\begin{array}{c} \text{DaDar} [1139] (8.0) \\ \text{CDF} [1140-1142] (11.6) \end{array}$	2003	Ok	
11001	-,			pp ($(n n o)(\phi)$	D0 [1143] (5.2)	2000	OR	
				$pp \to (\pi^+\pi^- J/\psi) \dots$	LHCb [1144–1146] (np),	2012	Ok	 xa⊢ ∐ xos⊨
					CMS [1147] (np)			
				$Y(4260) \to \gamma \left(\pi^+ \pi^- J/\psi\right)$	BESIII $[1148]$ (6.3)	2013	NC!	15 T 🕈 🕺 🕺
				$B \to K(\omega J/\psi)$	Belle $[1149]$ (4.3),	2005	NC!	
				$P \rightarrow V(\alpha, I/\alpha)$	BaBar $[1150]$ (4.0)	2005	Ob	
				$B \to K(\gamma J/\psi)$	$\begin{array}{c} \text{Define [1149, 1151] (5.5),} \\ \text{BaBar [1152, 1153] (3.6)} \end{array}$	2005	OK	
					LHCb $[1154] (> 10)$			3.82 3.84 3.86 3.88 3.9 3.92
				$B \to K(\gamma \psi(2S))$	BaBar $[1153]$ $(3.5),$	2008	NC!	M(J/ $\psi = \pi r)$ (GeV)
					Belle $[1151]$ (0.2),			$D + D_1 + \cdots + D_{3} + D_{1} + \cdots + D_{3} + D_{1} + D_$
					LHCb [1154] (4.4)			$2 D_1 1 420$
				$B \to K(D^{\circ}D^{*0})$	Belle $[1155, 1156]$ (6.4),	2006	NC!	$_{21c}$ $3^{3}S_{1}$
$(3000)^{+}$	2801.2 ± 2.2	40 ± 8	1+-	$V(4260) \rightarrow \pi^{-}(\pi^{+} I/a/a)$	$\frac{\text{BaBar}\left[1157\right](4.9)}{\text{BESIII}\left[1158\right](>8)}$	2012	Ok	<u>3-30</u>
$\Sigma_c(3900)$	3691.2 ± 3.3	40 ± 8	1	$I(4200) \rightarrow \pi (\pi J/\psi)$	Belle $[1159]$ (5.2)	2013	OK	$D^* + \bar{D}^*$
701390	0)+				CLEO data $[1160]$ (>5)			
20(070	\sim			$Y(4260, 4360) \rightarrow$	CLEO data $[1160]$ (3.5),	2013	Ok	$D + \bar{D}^*$
				$\pi^0(\pi^0 J/\psi)$	BESIII [1161] (10.4)			
				$Y(4260, 4390) \rightarrow$	BESIII $[1162]$ (2.1)	2013	NC!	$D + \bar{D}$
				$\pi^{-}(\pi^{+}h_{c})$	DECILI [1169 1164] (10)	0010		$2^{1}S_{0}$
				$Y(4260) \rightarrow \pi^{-}(DD^{-})^{+}$ $Y(4260) \rightarrow \pi^{0}(D\bar{D}^{*})^{0}$	BESIII [1163, 1164] (18) BESIII [1165] (>10)	2013 2015	Ok Ok	3.6 GeV 11 D
V(40c0)	4001.1 4 0 5		1	+ - (+ - I())	D D [1010 1011] (0)	2010		$1^{1}P_0$
Y(4200)	4221.1 ± 2.5	41.1 ± 4.0	1	$e^+e^- \rightarrow (\pi^+\pi^- J/\psi)$	$\begin{array}{c} \text{BaBar} & [1210, 1211] & (8), \\ \text{CLEO} & [1212, 1213] & (11) \end{array}$	2005	Oĸ	
Y1126	0)				$\begin{array}{c} \text{Bollo} & [1212, 1213] \\ \text{Bollo} & [1150, 1214] \\ \end{array} $			
1(420	v]				$\begin{array}{c} \text{Besill [1158, 1214] (15),} \\ \text{BESILI [1158, 1215] (np)} \end{array}$			
				$e^+e^- \rightarrow (\pi^0 \pi^0 I/y)$	CLEO [1212] (5.1)	2006	Ok	
				$c c (\pi \pi \sigma / \psi)$	BESIII [1161] (np)	2000	OK	2 -
				$e^+e^- \to (K^+K^-J/\psi)$	CLEO [1212] (3.7)	2006	NC!	$1^{3}S_{1}$
				$e^+e^- \to (f_0(980)J/\psi)$	BaBar [1211] (np),	2012	Ok	110
					Belle [1159] (np)			3.0 GeV
				$e^+e^- \to (\pi^+\pi^-h_c)$	BESIII [1162, 1216] (10)	2013	NC!	
				$e^+e^- \rightarrow (\pi^0\pi^0h_c)$	BESIII [1166] (np)	2014	NC!	
				$e^+e^- \rightarrow (\omega \chi_{c0})$	BESIII [1217] (>9)	2014	NC!	
				$e^+e^- \rightarrow (\gamma X(3872))$	BESIII [1148] (6.3)	2013	NC!	identified char
				$e^+e^- \to (\pi^- Z_c(3900)^+)$	BESIII [1158, 1164] (>8),	2013	Ok	
					Belle [1159] (5.2)			*un-identified ch
				$e^+e^- \to (\pi^0 Z_c(3900)^0)$	BESIII [1161, 1165] (10.4)	2015	Ok	
				$e^+e^- \rightarrow$	BESIII [1162, 1166, 1169,	2013	Ok	Newly discove
				$(\pi^{\mp,0}Z_c(4020)^{\pm,0})$	1170] (>10)			The way discove

monium narmonium red state1

B Anomalies

B->K*μ+μ-/K*e+e-: R(K*) (~2-3σ)

		$low-q^2$	$central-q^2$		
_	$R_{K^{*0}}$	$0.66 \ ^{+\ 0.11}_{-\ 0.07} \pm 0.03$	$0.69 {}^{+\ 0.11}_{-\ 0.07} \pm 0.05$		
	$95.4\%~\mathrm{CL}$	[0.52, 0.89]	[0.53, 0.94]		
	$99.7\%~\mathrm{CL}$	[0.45, 1.04]	[0.46, 1.10]		

Coming years for B Physics

Competition/Complementarity between Belle II vs LHCb

B physics in nutshell...

Trees, Boxes and Penguins

Basic quark level interactions in SM for B physics

CKM elements V_{cb,ub} measurement*
 New physics in the tree

- FCNC process (rare decay)
- New physics in the loop
- CKM elements V_{tb,ts} measurement

- FCNC process (oscillation)
- New physics in the loop
- CKM element V_{td,ts} measurement*

SM Effective Hamiltonian

Basic quark level interactions in SM for B physics

All the four fermi interactions are described Effective Hamiltonian.
 The Wilson Coefficient includes the QCD correction and its renormalisation running from m_W to m_b scale.

SM Effective Hamiltonian

Basic quark level interactions in SM for B physics

All the four fermi interactions are described Effective Hamiltonian.
 The Wilson Coefficient includes the QCD correction and its renormalisation running from m_W to m_b scale.

BSM Effective Hamiltonian

Extending the SM Effective Hamiltonian to BSM

 New physics induces new types of operator beyond SM ones.
 The Wilson Coefficient includes renormalisation running from new physics scale to electroweak scale and to m_b scale.

Leptoquark as solution of anomalies?

Tree level LQ diagrams seem to explain the patterns of anomaly

$$\begin{split} & Scalar \ leptoquark \\ \mathcal{L} \supset + \ y_{3 \ i j}^{LL} \bar{Q}_{L}^{C \ i,a} \epsilon^{ab} (\tau^{k} S_{3}^{k})^{bc} L_{L}^{j,c} - \\ & - \ y_{2 \ i j}^{RL} \bar{u}_{R}^{i} R_{2}^{a} \epsilon^{ab} L_{L}^{j,b} + \ y_{2 \ i j}^{LR} \bar{e}_{R}^{i} R_{2}^{a \ *} Q_{L}^{j,a} - \\ & - \ \tilde{y}_{2 \ i j}^{RL} \bar{d}_{R}^{i} \tilde{R}_{2}^{a} \epsilon^{ab} L_{L}^{j,b} + \ \tilde{y}_{2 \ i j}^{LR} \bar{Q}_{L}^{i,a} \tilde{R}_{2}^{a} \nu_{R}^{j} \\ & + \ \tilde{y}_{1 \ i j}^{RR} \bar{d}_{R}^{C \ i} \tilde{S}_{1} e_{R}^{j} + \\ & + \ y_{1 \ i j}^{LL} \bar{Q}_{L}^{C \ i,a} S_{1} \epsilon^{ab} L_{L}^{j,b} + \ y_{1 \ i j}^{RR} \bar{u}_{R}^{C \ i} S_{1} e_{R}^{j} + \ y_{1 \ i j}^{\overline{RR}} \bar{u}_{R}^{C \ i} \bar{S}_{1} \nu_{R}^{j} + \text{h.c.} \end{split}$$

Vector leptoquark

$$\begin{split} \mathcal{L} \supset &+ x_{3\,ij}^{LL} \bar{Q}_{L}^{i,a} \gamma^{\mu} (\tau^{k} U_{3,\mu}^{k})^{ab} L_{L}^{j,b} + \\ &+ x_{2\,ij}^{RL} \bar{d}_{R}^{C\,i} \gamma^{\mu} V_{2,\mu}^{a} \epsilon^{ab} L_{L}^{j,b} + x_{2\,ij}^{LR} \bar{Q}_{L}^{C\,i,a} \gamma^{\mu} \epsilon^{ab} V_{2,\mu}^{b} e_{R}^{j} + \\ &+ \tilde{x}_{2\,ij}^{RL} \bar{u}_{R}^{C\,i} \gamma^{\mu} \tilde{V}_{2,\mu}^{b} \epsilon^{ab} L_{L}^{j,a} + \tilde{x}_{2\,ij}^{LR} \bar{Q}_{L}^{C\,i,a} \gamma^{\mu} \epsilon^{ab} \tilde{V}_{2,\mu}^{b} \nu_{R}^{j} + \\ &+ \tilde{x}_{1\,ij}^{RR} \bar{u}_{R}^{i} \gamma^{\mu} \tilde{U}_{1,\mu} e_{R}^{j} + \\ &+ x_{1\,ij}^{LL} \bar{Q}_{L}^{i,a} \gamma^{\mu} U_{1,\mu} L_{L}^{j,a} + x_{1\,ij}^{RR} \bar{d}_{R}^{i} \gamma^{\mu} U_{1,\mu} e_{R}^{j} + x_{1\,ij}^{\overline{RR}} \bar{u}_{R}^{i} \gamma^{\mu} U_{1,\mu} \nu_{R}^{j} + \\ &+ x_{1\,ij}^{\overline{RR}} \bar{d}_{L}^{i} \gamma^{\mu} \bar{U}_{1,\mu} L_{L}^{j,a} + x_{1\,ij}^{RR} \bar{d}_{R}^{i} \gamma^{\mu} U_{1,\mu} e_{R}^{j} + x_{1\,ij}^{\overline{RR}} \bar{u}_{R}^{i} \gamma^{\mu} U_{1,\mu} \nu_{R}^{j} + \\ &+ x_{1\,ij}^{\overline{RR}} \bar{d}_{L}^{i} \gamma^{\mu} \bar{U}_{1,\mu} \nu_{R}^{j} + \\ &+ x_{1\,ij}^{\overline{RR}} \bar{d}_{L}^{i} \gamma^{\mu} \bar{U}_{L} \gamma^{\mu} \bar{d}_{L}^{i} + \\ &+ x_{1\,ij}^{\overline{RR}} \bar{d}_{L}^{i} \gamma^{\mu} \bar{U}_{L} \gamma^{\mu} \bar{d}_{L}^{i} + \\ &+ x_{1\,ij}^{\overline{RR}} \bar{d}_{L}^{i} \gamma^{\mu} \bar{U}_{L} \gamma^{\mu} \bar{d}_{L}^{i} + \\ &+ x_{1\,ij}^{\overline{RR}} \bar{d}_{L}^{i} \gamma^{\mu} \bar{d}_{L}^{i} \gamma^{\mu} \bar{d}_{L}^{i} \gamma^{\mu} \bar{d}_{L}^{i} + \\ &+ x_{1\,ij}^{\overline{RR}} \bar{d}_{L}^{i} \gamma^{\mu} \bar{d}_{L}^{i} \gamma^{\mu} \bar{d}_{L}^{i} + \\ &+ x_{1\,ij}^{\overline{RR}} \bar{d}_{L}^{i} \gamma^{\mu} \bar{d}_$$

I. Doršner et.al, Phys.Rept. 641 ('16)

x and y are the flavour coupling

Basic hadronic level interactions in BSM for B physics

Form factors include the non-perturbative QCD effect.

 Non-factorisable effect for hadronic decays: QCD effect between m_b and Λ_{QCD} scale.

Semi-leptonic, Leptonic B meson decays

Hadronic B meson decays

Basic hadronic level interactions in BSM for B physics

Form factors include the non-perturbative QCD effect

 Non-factorisable effect for hadronic decays: QCD effect between m_b and Λ_{QCD} scale

Basic hadronic level interactions in BSM for B physics

Form factors include the non-perturbative QCD effect

 Non-factorisable effect for hadronic decays: QCD effect between m_b and Λ_{QCD} scale

Basic hadronic level interactions in BSM for B physics

Form factors include the non-perturbative QCD effect

 Non-factorisable effect for hadronic decays: QCD effect between m_b and Λ_{QCD} scale

24

An observation of CP violation requires a complex phase from strong interaction!

$|A(B \to f)| \neq |A(\overline{B} \to \overline{f})|$

is the condition to have CP violation.

We can measure *CP* only through an interference of two amplitudes with different CP conserving and CP violating phases.

 $A(\overline{B}^{0} \to \overline{f}) = A_{1}e^{+i\theta_{1}}e^{+i\delta_{1}} + A_{2}e^{+i\theta_{2}}e^{+i\delta_{2}}$ $A(B^{0} \to f) = A_{1}e^{-i\theta_{1}}e^{+i\delta_{1}} + A_{2}e^{-i\theta_{2}}e^{+i\delta_{2}}$

 $\theta_{1,2}$: CP the violating phase, $\delta_{1,2}$: the CP conserving phase.

 $\frac{\Gamma(\overline{B}{}^0 \to \overline{f}) - \Gamma(B^0 \to f)}{\Gamma(\overline{B}{}^0 \to \overline{f}) + \Gamma(B^0 \to f)} = \frac{2(A_2/A_1)\sin(\theta_1 - \theta_2)\sin(\delta_1 - \delta_2)}{1 + 2(A_2/A_1)\cos(\theta_1 - \theta_2)\cos(\delta_1 - \delta_2)}$

Complex phase coming from strong interaction is NEEDED to be able to observe the complex phase coming from CP violation!

Challenges and progresses in B physics

Challenge of Flavour Physics

BSM information is hidden in the strong interaction effects

Rough stone

- Perturbative QCD factorisation approach...
- Non-perturbative QCD lattice QCD, QCD sum rule...
- Effective theory ChPT, HQET, SCET...

Discovery!

Difficult to precisely estimate the uncertainties associated to each assumption behind

Challenge of Flavour Physics

Amplitude Analysis : new paradigm in the high statistics era?

Rough stone

Parametrise the strong interaction and fit those parameters from data (either the same data or from the others). Cross check with theory computation is essential.

Challenge of Flavour Physics

Amplitude Analysis : new paradigm in the high statistics era?

Rough stone

Famous example : muon g-2

Discovery!

and fit those

parameters from data (either the same data or from the others). Cross check with theory computation is essential.

Data driven method for UT precision test

$B \rightarrow D^* | v (|=e,\mu)$

Determining the CKM element Vcb and form factors simultaneously

Exclusive determination relies heavily on the form factor values determined by the lattice QCD.

Attempt: determining the various form factors, including its momentum dependence, from the data to learn some aspects of form factor behaviour.

$B \rightarrow D^* | v (|=e,\mu)$

Determining the CKM element Vcb and form factors simultaneously

32

$$\langle D^{*}(p_{D^{*}},\epsilon) | \bar{c}\gamma_{\mu}(1-\gamma_{5})b | \bar{B}(p_{B}) \rangle = \frac{B \rightarrow D^{*} \text{ form factor}}{\frac{2iV(q^{2})}{m_{B}+m_{D^{*}}} \epsilon_{\mu\nu\alpha\beta} \epsilon^{*\nu} p_{D^{*}}^{\alpha} p_{B}^{\beta} - 2m_{D^{*}} A_{0}(q^{2}) \frac{\epsilon^{*} \cdot q}{q^{2}} q_{\mu}} - (m_{B}+m_{D^{*}})A_{1}(q^{2}) \left(\epsilon_{\mu}^{*} - \frac{\epsilon^{*} \cdot q}{q^{2}} q_{\mu}\right) \\ + A_{2}(q^{2}) \frac{\epsilon^{*} \cdot q}{m_{B}+m_{D^{*}}} \left[(p_{B}+p_{D^{*}})_{\mu} - \frac{m_{B}^{2} - m_{D^{*}}^{2}}{q^{2}} q_{\mu} \right]$$

Form factors including its momentum dependence are fitted to the experimental data (3 angles, 1 momentum) along with the Vcb.

Belle arXiv:1809.03290

Results in CNL parameterisation

$$\rho^2 = 1.106 \pm 0.031 \pm 0.007,$$

$$R_1(1) = 1.229 \pm 0.028 \pm 0.009,$$

$$R_2(1) = 0.852 \pm 0.021 \pm 0.006,$$

$$\mathcal{F}(1)|V_{cb}|\eta_{\rm EW} \times 10^3 = 35.06 \pm 0.15 \pm 0.56,$$

Results in BGL parameterisation

$$\begin{split} \tilde{a}_0^f \times 10^3 &= -0.506 \pm 0.004 \pm 0.008, \\ \tilde{a}_1^f \times 10^3 &= -0.65 \pm 0.17 \pm 0.09, \\ \tilde{a}_1^{F_1} \times 10^3 &= -0.270 \pm 0.064 \pm 0.023, \\ \tilde{a}_2^{F_1} \times 10^3 &= +3.27 \pm 1.25 \pm 0.45, \\ \tilde{a}_0^g \times 10^3 &= -0.929 \pm 0.018 \pm 0.013, \\ \mathcal{F}(1)|V_{cb}|\eta_{\rm EW} \times 10^3 &= 34.93 \pm 0.23 \pm 0.59, \end{split}$$

$B \rightarrow D^* | v (|=e,\mu)$

Determining the CKM element Vcb and form factors simultaneously

To have interference, we need the D and D deca the same final state, e.g. Ksπ+π-

$$A(B^{-} \to (K_{S}\pi^{-}\pi^{+})_{D,\overline{D}}K^{-}) = A_{B} \left[A_{D}(s_{12},s_{13})e^{i\delta_{D}(s_{12},s_{13})} + r_{B}e^{i(\delta_{B}-\phi_{3})}A_{\overline{I}} \right]$$

0.95

Λ

 \overline{O}

area has

excluded

sin 2

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.4

To have interference, we need the D and D deca the same final state, e.g. Ksπ+π-

$$A(B^{-} \to (K_{S}\pi^{-}\pi^{+})_{D,\overline{D}}K^{-}) = A_{B} \left[A_{D}(s_{12},s_{13})e^{i\delta_{D}(s_{12},s_{13})} + r_{B}e^{i(\delta_{B}-\phi_{3})}A_{\overline{I}} \right]$$

Since strong interaction is CP conserving, we have relation between D and D amplitudes

$$A_{\overline{D}}(s_{12}, s_{13})e^{i\delta_{\overline{D}}(s_{12}, s_{13})} = A_D(s_{13}, s_{12})e^{i\delta_D(s_{13}, s_{12})}$$
$$= A_B \left[A_{\underline{D}}(s_{12}, s_{13})e^{i\delta_D(s_{12}, s_{13})} + r_B e^{i(\delta_B - \phi_3)}A_D(s_{13}) + r_B e^{i(\delta_B - \phi_3)}A_D(s_{13}) \right]$$

<u>)</u> 9

Ū

area has

excluded

sin 2

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.4

Strong phase for $\phi_3(\gamma)$ measurement

Determining the CKM phase ϕ_3 using external input for strong phase

Belle hep-ex/0303187

FIG. 2: (a) m_- , (b) m_+ , (c) $m_{\pi\pi}$ and (d) Dalitz plot distribution for $D^{*-} \to \overline{D}{}^0 \pi_s^-$, $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ decays from the $e^+e^- \to c\bar{c}$ continuum process. The points with error bars show the data; the smooth curve is the fit result.

 $=A_B \left[A_D(s_{12}, s_{13}) e^{i\delta_D(s_{12}, s_{13})} + r_B e^{i(\delta_B - \phi_3)} A_D(s_{13}, s_{12}) e^{i\delta_D(s_{13}, s_{12})} \right]$

Strong phase for $\phi_3(\gamma)$ measurement

Determining the CKM phase ϕ_3 using external input for strong phase

CKM unitarity triangle $2020 \Rightarrow 2030$

Illustration of CKM triangle 2020

- V_{cb}: Exclusive (inclusive) measurements point to lower (higher) values.
 Individual uncertainties are much smaller.
- ΔM_s/ΔM_d : The latest lattice QCD ξ value has about a half uncertainty.
- *α*, *β*, *γ*: Experimental error dominant. The uncertainties will go down to
 δφ₁ (δβ)=~0.4°, δφ₂ (δα)=~1°, δφ₃ (δγ)=~1.5°

CKM unitarity triangle $2020 \Rightarrow 2030$

- Curiously, the current central values indicate $\alpha + \beta + \gamma$ very close to 180 degree.
- But by varying them within 1 sigma range, we find that a significant deviation from α+β+γ≠180° is still quite possible.
- Solving the side measurement issues is very important to pin down the new physics!

The $b \rightarrow s\gamma$ processes can be used to test left-handedness of W!

 $\begin{array}{ccc} & \flat \rightarrow s & \gamma_L \text{ (left-handed polarisation)} \\ & & \overleftarrow{b} \rightarrow \overleftarrow{s} & \gamma_R \text{ (right-handed polarisation)} \end{array}$

The $b \rightarrow s\gamma$ processes can be used to test left-handedness of W!

We have been working on the method utilising the B→K_{res}γ→Kππγ final states. Photon polarisation is measured via the polarisation measurement of the recoiling hadrons, which can be obtained through amplitude analysis (2 angles and 2 Dalitz variables)

LHCb

cosê

LHCb

The $b \rightarrow s\gamma$ processes can be used to test left-handedness of W!

The B→K*e+e- process is dominated by the B→K*γ at low q² (e+e- mass) region. Using 3 angle distribution, one can determine the photon polarisation.

 $\operatorname{Re}(C_7'/C_7)$

The observed signal (0.0008<q² <0.257 GeV²) at LHCb: ~450 @9fb⁻¹

The $b \rightarrow s\gamma$ processes can be used to test left-handedness of W!

 $SU(2)_L \times SU(2)_R \times U(1)_{\tilde{Y}} \to SU(2)_L \times U(1)_Y \to U(1)_{\text{EM}}.$

Pati,Salam,1974;Mohapatra,Pati,1975; Mohapatra,Sejanovic,1975, See also M. Blanke et al. JHEP1203 for flavour studies

$$V_{(A)}^{R} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{\alpha} & \pm s_{\alpha} \\ 0 & s_{\alpha} & \mp c_{\alpha} \end{pmatrix}$$

LHCb result indicates m_{W2} ≥ 3 TeV, which is close to the limit at high P_T search.

Conclusions

- The coming years are very exciting for flavour physics: the Belle II and the upgrades of LHCb will improve the sensitivity to new physics drastically.
- Searching new physics through FCNC/CPV is sensible as introducing a new particle immediately induces FCNC and extra freedoms for CP violating phase.
- The challenge of B physics comes from the strong interaction effects, which hide the new physics information.
- Lattice QCD is one of the the most powerful tools to overcome this issue.
- Data driven method is becoming more and more available and it will open possibilities to reduce the uncertainties coming from the strong interactions.

backup