The first decade of experiments at the LHC – what have we learnt?

Eckhard Elsen

CERN Director Research and Computing (2016-2020)

14th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale", 23.-24.11.2021

Helmholtz Alliance

Hadron Colliders before the LHC

ISR

Steadíly building up knowledge and advancing collider technolgy

3

Total Cross Section $pp \rightarrow X$

- The total cross section at $\sqrt{s}=13$ TeV exceeds **100 mbarn**
- Hadrons "like" to interact via the • strong interaction; the detailed mechanisms are not yet fully understood ab initio: what used to be Pomeron and Reggetrajectories are today explained as multi-gluon exchange.
- The rise of $\sigma_{\rm tot}$ has been a matter of considerable debate

Total Cross Section and Observation of the exchange of a colorless C-odd gluonic compound

"Odderon-Discovery"

Physics expectations for the LHC at the start and now

- Explore the electroweak scale to discover new physics
 - SUSY ?
 - Provide an explanation for Dark Matter
- Discover the Higgs particle
 - done
 - much more fertile ground than expected

The advantage and dilemma of the LHC (from a 2021 perspective)

- energies

 - allow for very weakly interacting particles in strong interactions.
 - the strong interaction is largely a background
 - much like an e^+e^- or $\mu^+\mu^-$ -collider

pp-collisions offer tremendous interaction rates; protons can be accelerated to high

• We have learnt from Run 1 and 2 that New Physics is not strongly coupled to quarks and gluons in the energy regime we can explore up to a few TeV

Hence we have to resort to electroweak processes to search for New Physics or

• LHC will serve predominantly as a factory of weakly interacting particles – very

Standard Model Production Cross Section Measurements

Status: March 2021

Luminosities

- Effective cross sections range from ~nb to ~fb and smaller
- Searches thus require the highest sustainable luminosities at the LHC and the experiments to deal with the huge backgrounds
- Protons are "burnt off" in less interesting collisions
- It is not possible to prevent interactions in a way that was possible e.g. with polarised electron beams at HERA.

Luminosities

- Effective cross sections range from ~nb to ~fb and smaller
- experiments to deal with the huge backgrounds
- The current sensitivity is at the level of ~fb.
- HL-LHC will attain 3-4 ab^{-1} at \geq 13.6 TeV; a factor ~20 of what is available today

Searches thus require the highest sustainable luminosities at the LHC and the

• The rates of "interesting events" are dominated by the smallest cross section.

Integrated Luminosity [fb⁻¹] 60 2017 2018 2016 2012 10⊢ 2011 2015 02-May 01-Jul 31-Oct 02-Mar 31-Aug

10

LHC past and present and HL-LHC Plan

DEFINITION

EXCAVATION BUILDINGS

11

Selected physics results

Higgs Particle – the only fundamental scalar in the SM

Need to examine Higgs potential

Production of WWW – announced at EPS 2021

a purely electroweak process

WWW-production has also been observed in the CMS experiment

Top Pair Production in association with a jet

Define an energy asymmetry •

$$A_{E}(\theta_{j}) \equiv \frac{\sigma^{\text{opt}}(\theta_{j} | \Delta E > 0) - \sigma^{\text{opt}}(\theta_{j} | \Delta E < 0)}{\sigma^{\text{opt}}(\theta_{j} | \Delta E > 0) + \sigma^{\text{opt}}(\theta_{j} | \Delta E < 0)}$$

and measure

Limits on SUSY quark and lepton production

16

Other channels have also been measured. More statistics needed.

 \rightarrow talk of Emí Kou

17

Simultaneous fit of CKM angle γ and charm mixing parameters

eigenstates

LHC produces (new) hadrons

Observation of a charmed Tetra-quark – announced at EPS 2021

- Ordinary matter is colourless •
 - baryons, containing 3 constituent quarks
 - Mesons contain a quark-antiquark system
- LHCb observes a Tetra-quark state T_{cc}^+ containing $cc\bar{u}d$, i.e. an open charm system.

Triple J/ Ψ -Production observed in CMS

21

Charm production in pp-collisions

- Production of charm-quarks has been measured by the ALICE experiment
 - Λ_c^+ are much more copiously produced than in e^+e^- or in ep-collisions

Strangeness p

ALI-PREL-321075

Figure 6: The $(\Lambda + \overline{\Lambda})/2K_0^0$ ratio in pp collisions at $\sqrt{s} = 7$. TeV and in p-Pb collisions at $\sqrt{s_{TT}} = 5.02$ TeV Figure 5 shows the ratio of Λ to K_5 as a function of particle p_T in both pp and p-Pb collisions for ΔB_5 as a function of p_T in both pp and p-Pb collisions for ΔB_5 as a function of V_0^0 -particle p_T associated with charged particle jets with $p_T^{ch} \rightarrow 10$. GeV/c reconstructed using different selection criteria. The systematic uncertainties (open boxes) are fully uncorrelated with p_T . the anti- k_T jet finder with resolution parameter R = 0.4. The ratio is shown for the same selection of the matching in the ratio of R = 0.4. The particles is the particle for the selection of the matching is shown for the same selection of the matching.

measuree inclusive ı in Fig. 4, ie distance ment close

the steeply 12 lominating

Preparing for HL-LHC

Detector Resolution

- We have learnt from LEP and SLD, from BaBar and Belle/Belle II that full reconstruction of the complex final states is only possible with ultimate resolution
 - momentum and energy reconstruction
 - flavour tagging
 - particle identification

Experiments at the LHC / HL-LHC in perspective

- Experiments must at least provide the resolution of the best proposed detectors at e⁺e⁻ factories and still reject the pile-up of other events
 - e.g. **Timing** has be added as an important tool to reject (slightly) out-of-time interactions (pile-up). This is a tremendous challenge and added complexity but a necessary tool to provide sensitivity to new physics.
 - ps-timing will also be key to make LHCb during Run 5 feasible

Flavour physics

- LHCb profits from the large cross section for b-quark production in ppcollisions but has to throttle the rate due to detector limitations (LHC is separating the beams laterally at the IP).
 - violation in the charm system
 - LS4

LHCb has published a wealth of results on b-physics and observed CP-

• For rare decays the detector rate capability needs to be improved; hence the LS2 upgrade, a rebuild of the detector, and plans for a further upgrade in

• so far the physics is limited by the performance (granularity) of the detector

Heavy Ion Physics

- The purpose of ALICE is primarily to study the strong interaction
 - comparison of PbPb to pp and pPb collisions and other ions
- Lessons, in particular from Run 1 and 2: •
 - quark gluon plasma and hence prove particularly interesting
 - Need for higher rate capability

large cross sections and hence use only a small fraction of possible pp-luminosity

strangeness, charm and beauty production originate from different phases of the

Lessons learnt have been cast into a new Strategy for Particle Physics

European Strategy for Particle Physics Update 2020...

- The successful completion of the high-luminosity upgrade of the (LHC) machine and detectors should remain the focal point of European particle physics, together with continued innovation in experimental techniques.
 - New experimental ideas are welcome and key to progress
- The full physics potential of the LHC and the HL-LHC, including the study of flavour physics and the quark-gluon plasma, should be exploited.
 - ATLAS, CMS, LHCb and ALICE will continue to be upgraded and run till the end of the 2030s or early 2040s and beyond

The LHC / HL-LHC will be our primary tool for research at the energy frontier for the next years to come

31

LHC detectors and their upgrades

ALICE

CMS

Why is this reasonable?

Experimental tools improve and systematic limitations are pushed out

Low mass detectors near beam - Example: Plans of ALICE 3

- 3 Inner layers closer to IP, (e.g. Iris tracker)
 - retractable innermost layer ~ 5 mm
 - X₀ ~0.1 % / layer

Will be used for flavour tagging

Timing - Example ATLAS HGTD

- 2 disks either side in gap between ATLAS barrel and end cap.
- Each instrumented double-sided layer supported by cryostat/support structure, moderator pieces for protection against back splash.
 - Acceptance at $2.4 < |\eta| < 4$
 - Low-Gain Avalanche Silicon
 Detectors (LGAD) sensors
 - Enable precision timing, retain signal efficiency after heavy irradiation

Integrated Fast Timing - Example LHCb for Run 5

- Fast Timing for
 - VELO
 - RICH
 - ECAL
 - TORCH

Precision Calorimetry - Example CMS

- Full replacement of existing CMS endcap ECAL and HCAL •
- Integrated sampling calorimeter •
- Absorber •
 - EM section: Pb, CuW, Cu
 - Hadronic section: steel, Cu
- Active material
 - High radiation area: 8" hexagonal silicon sensors
 - Low radiation area: scintillator tiles with on-tile SiPM
- 5D imaging calorimeter •
 - Extends tracking in forward regions
 - Highly granular spatial information
 - Si cell size: 0.5 cm² and 1.2 cm²
 - Scintillator tile size: $(23 \text{ mm})^2 (55 \text{ mm})^2$
 - Large dynamic range for energy measurements
 - Timing information to tens of picoseconds

Particle Flow Calorimetry

e.g. Wproduction in forward dírection

38

Reconstruction and Simulation

- from the integrated luminosity
 - - machine learning and much more
 - dedicated event streaming
 - optimising data formats

Some of the results from the LHC have been obtained earlier than expected

This is largely owed to the advances in reconstruction and simulation

detailed simulation and parametrisation - understanding of pile-up

Upgrading / re-inventing the Software

- In addition to providing better resolution improve
 - Better algorithms yield:
 - better resolutions
 - lower backgrounds
 - and hence better signals

In addition to providing better resolution detectors also need the software to

What does this mean for Particle Physics around 2040?

- We could be lucky and New Physics turns up directly
- LHC / HL-LHC will define the yardstick for physics reach of any other facility (e+e- and $\mu^+\mu^-)$
 - Today's predictions for HL-LHC physics reach are probably too pessimistic in view of new experimental ideas and reconstruction capability
 - Flavour physics becomes more important and better accessible; competition/ complementarity from Belle II and its possible upgrade is interesting
- LHC / HL-LHC will continue as the copious source of physics

Examples of new ideas

- FASER and SND
 - Neutrinos and non-interacting particles in the very forward direction
- SMOG at LHCb
 - pA collisions in front of the VELO detector
- Crystal channeling for rare charm decays
- MATHUSLA
 - a cosmic telescope and detector for long lived particles from the LHC

Summary

- - Direct observation of New Physics? •
 - Its scope for precision is considerably better than originally expected and rivals the precision of lepton colliders
- But New Physics could hide elsewhere •
 - Low mass Dark Matter searches
 - Neutrino Physics

• LHC / HL-LHC will be the workhorse for Particle Physics for the next two decades

Fully exploit LAC

