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The HGCAL

Upgrade for the High-Luminosity LHC in the endcap region

> Replacing the present forward
calorimeter (right) to meet the
challenges of the HL phase

> A high granularity imaging
calorimeter

> Greatly improved spatial
resolution and timing

- Better discrimination of pileup
- Better shower separation etc.
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The Geometry of the HGCAL
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Each hexagon represents a wafer
with multiple detector cells

(pictures to the right).
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One silicon layer in CE-E (right).
All Pictures: CMS-TDR-019
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Computing Challenge
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= Increase in computing time beyond the expected increase in resources.
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https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

Vision

Save CPU time by using a Neural Network to simulate
the HGCAL.
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Vision

Save CPU time by using a Neural Network to simulate the HGCAL.

Multiple proof-of-principle
demonstrations for GAN/VAE-based fast
calorimeter simulation

But no working CMSSW implementation
yet

Use Graph Neural Networks (‘GNNs’) to
deal with sparsity and irregular geometry

Generative Adversarial Networks

Random Vector

Discriminator Loss

Generator

Dataset

T

Loss eg. Minmax:

E, [log D(x)] + E; [log (1 — D(G(2)))]
Maximize for the generator, minimize for the discriminator

First proposed by Goodfellow et al (arXiv.org 1406.2661 )
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https://arxiv.org/abs/1406.2661

Necessary Steps

Training sample production

Training will be on single
particles (photon, leptons,
hadrons)

Downside of high granularity
= Sparse data (right)

Make the geometry and cell
properties accessible to the deep
learning frameworks

Construct the neighborhood
between the cells for the graph
representation

Eventually, development of a
generative model to handle sparse
data and large graphs
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Geometry Extraction

Make the HGCAL geometry available to the Deep Learning frameworks

> CMSSW provides
- Cell positions
- Cell properties, e.g. type
- Silicon
- Scintillator
Neighboring cells within
silicon or scintillator
> Full detector neighborhood
construction only once
Min. distance (x, y) Part of a layer in the hadronic part of the HGCAL
nelghbors beyond > Black: Some connections within the silicon/scintillator parts
subdetector borders
Nearest cell in +z direction

> Blue: The connections between silicon and scintillator cells

> Max distance 0.5 cm between the corners of the cells
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ML on graphs

Message Passing: Information propagation for GNNs

Message:

Update Node 4
(w/ Neighbors, Messages)

Msg;_,; = Msg (x,-,xj, edgej_,l-)
Aggregate:
Aggr; = Aggr Msg;
jen @

Update:

x; < Upd (x;, Aggr,)
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Energy Regression
Discriminator and a regressor have similar 3D development of a 100GeV neutral pion shower
tasks:

Discriminator maps the graph to a
probability

Regressor maps the graph to a
regressed variable

Technical implementation similar

Capabilities of GNN architectures
measurable in a regression task

Idea : Test technical capabilities and the
power of GNN architectures with energy
regression on simplified datasets. W. Korcari
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Energy Regression GNN on HGCAL showers

Collaboration with W. Korcari, G. Kasieczka (UH)

Validation loss of the regression GNNs

9
Neighborhood Construction
8 1 —— Radius Clustering (2cm)
—— KNN (K=7)
_ 7 —— Geometry extracted from CMSSW
S
= 6
> Simulate only the 2
o 9
relevant part of the 2
HGCAL 24
5 3
> Photons with 2 .
[50, 100]GeV and n = 2
1
> Loss: L=1%[1-1] ol i . . . . . .
n Y 0 10 20 30 40 50 60 70
. Epochs
> Early stopping

= Technical capabilities proven
= GNN shows very promising performances

= Geometry extracted from CMSSW leads to the best
results
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Architecture of the GNNs on HGCAL showers

Collaboration with W. Korcari, G. Kasieczka (UH)

> PyTorch
implementation:
- 3 GCNConv layers
. 2 fully connected
layers
- 2 Batch normalization
layers

> Hyperparameters:

- Learning rate 0.001
- Batch size 64
- 300 epochs

W. Korcari (UH)
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Energy Regression GNN on a Toy Dataset

A CLIC inspired toy dataset (arXiv.org 1912.06794):

- ECAL: 25 layers of 51 x 51 cells

- HCAL: 60 layers of 11 x 11 cells

- Electron showers, pr ~ Uygevsoocev)> ® ~ Uloo3srad]s 1 ~ Ul-0.524rad0.524rad]

Some Models are provided with following variables ("High Level Variables”):
- Eamag SUm of cells in the electromagnetic part

- Epadaron SUM of cells in the hadronic part

- n (Energy weighted average)

- ¢ (Energy weighted average)

Loss is the mean relative error: L = %Zi

1= %
Vi

(]

Early stopping
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https://arxiv.org/abs/1912.06794

The Architecture of the GNNs on the Toy Dataset

Start Repeat 20 times
Energy for each cell

Message Passing Layer for node i

Stacking with cell
Stack with zeros properties Generate Messages <

(shape: nodes *
I-' Msg; ,; =z

l

the

dynamic features)

Aggr = Z Msg;.,;
JEN ()

\_ Add all Nodes

Calculate the update

Upd; = DNN((1 +¢) - x; + Aggr;)
No Yes z; + Upd;

20 times repeated?

Predicted Energy
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Training of the Energy Regression GNNs on the Toy Dataset

Eevelopment of the Validation loss of the GNNs compared to the three baseline models

Min Error/Name(#Parameters)
== = 3.3/LinReg (3)

== = 2.6/DNN(HLV) (3.3k)
1.9/GNN (7.5k)
1.6/GNN+HLV (19k)
1.4/GoogLeNet* (15M)

Relative Absolute Error [%]

648h

14 GoogLeNet*
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Number of Gradient Steps

= GNNs approach the performance of state-of-the-art Models
= HLV help convergence and shorten training time
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Performance Comparison

Relativ Error vs True Energy on the test set
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Summary

Geometry was extracted from CMSSW

Technical infrastructure has been set up

GNNs show good performance in a regression task
Studies on generator architectures ongoing
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Thank you!
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