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The HGCAL
Upgrade for the High-Luminosity LHC in the endcap region

> Replacing the present forward

calorimeter (right) to meet the

challenges of the HL phase

> A high granularity imaging

calorimeter

> Greatly improved spatial
resolution and timing

Better discrimination of pileup

Better shower separation etc.
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The Geometry of the HGCAL

`

One silicon layer in CE-E (right).
• Each hexagon represents a wafer 

with multiple detector cells 
(pictures to the right).

• Higher number of cells in the 
inner sections.

ca. 2 m

One mixed layer of scintillator  and 
silicon detectors in CE-H (left).
Each hexagon represents a wafer 
with multiple detector cells
(pictures below).
● The outer scintillator tiles form a 

square grid with different edge 
sizes.

● Note the cut hexagons that define 
the outer/inner borders (above).

Interaction 
Point

All Pictures: CMS-TDR-019

1.18cm² 
silicon 
cell size

0.52cm²
silicon
cell size

4 to 32 cm² 
scintillator 
cell size
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Computing Challenge

> High Luminosity phase

More particles to

simulate

> HGCAL – More cells
and channels

Complex and

time-consuming
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Run4: 200PU and 275fb 1/yr, 7.5 kHz, no on-going R&D included
Run4: 200PU and 500fb 1/yr, 10 kHz, no on-going R&D included
10 to 20% annual resource increase

CPU time requirements (link)

⇒ Increase in computing time beyond the expected increase in resources.
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https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults


Vision

Save CPU time by using a Neural Network to simulate

the HGCAL.
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Vision

Save CPU time by using a Neural Network to simulate the HGCAL.

> Multiple proof-of-principle

demonstrations for GAN/VAE-based fast

calorimeter simulation

> But no working CMSSW implementation

yet

> Use Graph Neural Networks (‘GNNs’) to

deal with sparsity and irregular geometry

First proposed by Goodfellow et al (arXiv.org 1406.2661 )
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https://arxiv.org/abs/1406.2661


Necessary Steps
Starting the project

> Training sample production

Training will be on single

particles (photon, leptons,

hadrons)

Downside of high granularity

⇒ Sparse data (right)

> Make the geometry and cell

properties accessible to the deep

learning frameworks

Construct the neighborhood

between the cells for the graph

representation

> Eventually, development of a

generative model to handle sparse

data and large graphs
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Geometry Extraction
Make the HGCAL geometry available to the Deep Learning frameworks

> CMSSW provides

Cell positions
Cell properties, e.g. type

Silicon

Scintillator

Neighboring cells within

silicon or scintillator

> Full detector neighborhood
construction only once

Min. distance (𝑥, 𝑦)
neighbors beyond

subdetector borders

Nearest cell in ±𝑧 direction
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Part of a layer in the hadronic part of the HGCAL

> Black: Some connections within the silicon/scintillator parts

> Blue: The connections between silicon and scintillator cells

> Max distance 0.5 cm between the corners of the cells
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ML on graphs
Message Passing: Information propagation for GNNs

Update Node 4

(w/ Neighbors, Messages)

3

5

4
1

6

2

1 Message:

Msg𝑗→𝑖 = Msg (x𝑖,x𝑗, edge𝑗→𝑖)

2 Aggregate:

Aggr𝑖 = Aggr
𝑗∈𝒩 (𝑖)

Msg𝑗→𝑖

3 Update:

x𝑖 ← Upd (x𝑖,Aggr𝑖)
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Energy Regression

Discriminator and a regressor have similar

tasks:

> Discriminator maps the graph to a

probability

> Regressor maps the graph to a

regressed variable

⇒ Technical implementation similar

⇒ Capabilities of GNN architectures

measurable in a regression task

Idea : Test technical capabilities and the

power of GNN architectures with energy

regression on simplified datasets.
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Energy Regression GNN on HGCAL showers
Collaboration with W. Korcari, G. Kasieczka (UH)

> Simulate only the

relevant part of the

HGCAL

> Photons with

[50, 100]GeV and 𝜂 = 2

> Loss: 𝐿 = 1
𝑛
∑𝑖 |1 −

̂𝑦𝑖
𝑦𝑖
|

> Early stopping
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⇒ Technical capabilities proven

⇒ GNN shows very promising performances

⇒ Geometry extracted from CMSSW leads to the best

results
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Architecture of the GNNs on HGCAL showers
Collaboration with W. Korcari, G. Kasieczka (UH)

> PyTorch
implementation:

3 GCNConv layers

2 fully connected

layers

2 Batch normalization

layers

> Hyperparameters:

Learning rate 0.001

Batch size 64

300 epochs

W. Korcari (UH)
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Energy Regression GNN on a Toy Dataset
Simplified dataset for Performance Studies

> A CLIC inspired toy dataset (arXiv.org 1912.06794):

ECAL: 25 layers of 51 × 51 cells

HCAL: 60 layers of 11 × 11 cells

Electron showers, 𝑝T ∼ U[0GeV,500GeV], 𝜑 ∼ U[0,0.35rad], 𝜂 ∼ U[−0.524rad,0.524rad]

> Some Models are provided with following variables (”High Level Variables”):

𝐸elmag Sum of cells in the electromagnetic part

𝐸hadron Sum of cells in the hadronic part

𝜂 (Energy weighted average)

𝜙 (Energy weighted average)

> Loss is the mean relative error: 𝐿 = 1
𝑛 ∑𝑖 |1 −

̂𝑦𝑖
𝑦𝑖
|

> Early stopping
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https://arxiv.org/abs/1912.06794


The Architecture of the GNNs on the Toy Dataset

Stacking with cell
properties

Message Passing Layer for node i

Generate Messages 

Aggregate the messages 

Calculate the update 

Yes

20 times repeated?

No

Start 
Energy for each cell 

Stack with zeros 
(shape: nodes *

dynamic features)

Repeat 20 times

Add all Nodes

DNN

Predicted Energy
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Training of the Energy Regression GNNs on the Toy Dataset
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Development of the Validation loss of the GNNs compared to the three baseline models
Min Error/Name(#Parameters)

3.3/LinReg (3)
2.6/DNN(HLV) (3.3k)
1.9/GNN (7.5k)
1.6/GNN+HLV (19k)
1.4/GoogLeNet* (15M)

⇒ GNNs approach the performance of state-of-the-art Models

⇒ HLV help convergence and shorten training time
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Performance Comparison
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Summary

> Geometry was extracted from CMSSW

> Technical infrastructure has been set up

> GNNs show good performance in a regression task

> Studies on generator architectures ongoing
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Thank you!
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www.desy.de

Soham Bhattacharya, Sam Bein, Engin Eren,
Frank Gaede, Gregor Kasieczka, William Korcari,
Dirk Krücker, Peter McKeown, Moritz Scham,
Moritz Wolf
CMS-E
moritz.scham@desy.de

DESYª | Fast simulation of the HGCAL with generative models | HamGen | Terascale | 23.11.2021 18/18

mailto:moritz.scham@desy.de

