Generative Models for Fast Electromagnetic and Hadronic Shower Simulation

Erik Buhmann, Sascha Diefenbacher, Engin Eren, Frank Gaede, Daniel Hundhausen, Gregor Kasieczka, William Korcari, Anatolii Korol, Katja Krüger, **Peter McKeown**¹, Lennart Rustige

¹ Deutsches Elektronen-Synchrotron 23.11.2021

peter.mckeown@desy.de

Outline

1 The ILD detector at the ILC

2 Generative Models

- Generative Adversarial Networks
- Wasserstein Generative Adversarial Networks
- Bounded-Information Bottleneck Autoencoders
- **3** Simulating Pion showers
- 4 Angular conditioning efforts

The ILD Concept

- International Large Detector (ILD) concept for the International Linear Collider (ILC)
 - Higgs Factory (initial 250 GeV stage)
 - High energy e⁺e⁻ linear collider
- Optimized for Particle Flow
 - Reconstruct each individual particle in subdetector
 - Obtain optimal detector resolution
- High granularity calorimeters:
 - Sampling calorimeters
 - SiW Ecal: 30 layers, 5x5 mm², 2 sampling fractions
 - FeSci Hcal: 48 layers, 3x3 cm²

Reducing the Strain on HEP Computing Resources

- MC simulation is computationally expensive
 - Calorimeters most intensive part of detector simulation
- Generative models potentially offer orders of magnitude speed up
- Amplify statistics of original data set
 - Generate new samples following distribution of original data
 - Significant speed up

WALL CLOCK CONSUMPTION PER WORKFLOW

D. Costanzo, J. Catmore, ATLAS Computing update, LHCC meeting, 2019

Architectures: GAN and WGAN

GAN- Angular photons

- Original Generative architecture applied for shower generation
- Discriminator and Generator play a minmax game

WGAN-Pions

- Alternative to classical GAN training
- Wasserstein-1 distance as loss with gradient penalty: **improve stability**
- Addition of auxiliary constrainer networks for improved conditioning performance

Architectures: BIB-AE

Bounded-Information Bottleneck Autoencoder (BIB-AE)- Pions

- Unifies features of both GANs and VAEs
- Post-Processor network: Improve per-pixel energies; second training
- Multi-dimensional KDE sampling: better modeling of latent space

Voloshynovskiy et. al: Information bottleneck through variational glasses, arXiv:1912.00830

Buhmann et. al: Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed, CSBS 5, 13 (2021)

From Photons to Pions

Photon showers

- Predominantly governed by EM interactions
- Homogeneous structure →

Easy to generalise

Pion showers

- Hadronic and EM interactions
- Complex structure
- Large event-to-event fluctuations

Hard to learn

Pion dataset

Shower Core

- AHCAL Option
- Remove ECal from geometry
- Significant sparsity in data
 - Use shower core
 - Barely lose any hits
- 500k showers
- Fixed incident point and angle
- Irregular geometry projected into 25x25x48 regular grid
- Uniform energy: 10-100 GeV

Pion Showers: Sim Level Results

Pion Reconstruction

Pion Showers: Linearity and resolution

Pion Showers: Computing Time for Inference

Hardware	Simulator	Time / Sl	nower $[ms]$	Speed-up
CPU	Geant4	2684	± 125	$\times 1$
	WGAN BIB-AE	47.923 350.824	± 0.089 ± 0.574	$\times 56 \times 8$
GPU	WGAN BIB-AE	$\begin{array}{c} 0.264 \\ 2.051 \end{array}$	± 0.002 ± 0.005	×10167 ×1309

Speed-up of as much as four orders of magnitude on single core of Intel[®] Xeon[®] CPU E5-2640 v4 and NVIDIA[®] A100 for batch size 10000

Conditioning requirements for a general simulation

- Conditioning for a general calorimeter simulation:
 - Energy 🗸
 - Incidence point
 - Two angles
 - Polar angle: θ
 - Azimuthal angle: ϕ

Angular conditioning- Training data

In Progress: condition generative networks on particle's angle of incidence and energy •

25

20

10

5

0

0

5

z [layers] 15

- Start simple: •
 - Fixed energy- 20 GeV •
 - Only vary polar angle in one direction- from 90°-30° •
 - Fixed particle type- photons ٠
- Problem: How to make sure the full shower is contained? •
 - Extend the selected grid in y: shape (30,30,40) (z,x,y)
 - Shift gun position •
- Using 132k showers for training

MeV 10^{2} GEANT 4 shower 20 GeV 4k overlay $\cdot 10^{1}$ $\cdot 10^{0}$ -10^{-1} 25 35 10 20 30 15 y[cells]

 10^{-2}

Angular conditioning- Preliminary results

Page 15

70°

50°

35

30

35

30

Angular conditioning- Some physics distributions

• Compare generated and GEANT4 distributions for a fixed angle of 60 degrees

Angular conditioning- With a Constrainer Network

Angular linearity and resolution

Conclusion

Achieved

- Generative models hold promise for fast simulation of calorimeter showers with high fidelity
- Demonstrated high fidelity simulation of hadronic showers with generative models
- Demonstrated angular and energy conditioning in a GAN architecture

Ongoing Work

- Vary energy and angle simultaneously and study effect on performance
- Incorporate angular conditioning in more sophisticated architectures e.g. BIB-AE

Next Steps

• Simulation of hadronic showers including HCAL and ECAL

Architectures: BIB-AE

More Details

- Unifies features of both GANs and VAEs
- Adversarial critic networks rather than pixel-wise difference a la VAEs
- Improved latent regularisation: additional critic and MMD term
- Post-Processor network: Improve per-pixel energies; second training

- Updates and improvements:
 - Dual and resetting critics: prevent artifacts caused by sparsity
 - · Batch Statistics: prevent outliers/ mode collapse
 - Multi-dimensional KDE sampling: better modeling of latent space

Kernel Density Estimation: BIB-AE

Buhmann et. al: Decoding Photons: Physics in the Latent Space of a BIB-AE Generative Network, EPJ Web of Conferences 251, 03003 (2021)

Pion correlations

GEANT4 - BIB-AE

	m_1	$m_{ m j}$	m_{-}	$m_{\tilde{c}}$	ш	m	E	E	u	E_1/E	E_2/E	E_3/E
560 ⁴⁷⁴ 5679 667	x	l, y	1, z	2, x	2, y	2, z	vis	inc	hit	vis	vis	vis
$E_3/E_{\rm vis}$	-0.01	-0.04	0.00	-0.07	-0.04	-0.07	0.00	0.01	-0.01	-0.00	-0.03	0.00
$E_2/E_{\rm vis}$	-0.01	-0.00	-0.03	0.02	-0.02	0.01	-0.02	-0.02	-0.01	0.02	0.00	
$E_1/E_{\rm vis}$	0.00	0.03	0.00	0.04	0.04	0.04	0.01	0.00	0.02	0.00		
$n_{ m hit}$	0.03	-0.02	-0.02	0.13	0.14	0.06	0.00	-0.01	0.00			
$E_{\rm inc}$	0.01	-0.03	-0.00	0.08	0.09	0.06	-0.01	0.00				
$E_{\rm vis}$	0.03	-0.02	-0.01	0.09	0.09	0.06	0.00					
$m_{2,z}$	-0.06	0.01	-0.06	-0.08	-0.05	0.00						
$m_{2,y}$	-0.10	-0.03	-0.05	0.01	0.00							
$m_{2,x}$	-0.08	-0.00	-0.06	0.00								
$m_{1,z}$	-0.01	-0.04	0.00									
$m_{1,y}$	-0.00	0.00										
$m_{1,x}$	0.00											
-												

GEANT4 - WGAN

Angular conditioning- 60 degree shower shape distributions

Angular conditioning- 80 degree other distributions

