∂TRIUMF

CaloDVAE : Discrete VAEs for Fast Calorimeter Simulation

A. Abhishek, E. Drechsler, W. Fedorko, B. Stelzer

abhishek@myumanitoba.ca

Discovery accelerate

ATLAS at Large Hadron Collider

Physics goals :

- 1. Higgs Boson measurements
- 2. Physics beyond the Standard Model (BSM) e.g. Dark matter
- 3. Rare processes e.g. WWW production

Calorimeters

Measure energy of the particles through Electromagnetic or Hadronic interactions

Motivation

Current techniques for Calorimeter shower simulation are computationally expensive

© CERN

5

[1] Paganini, de Oliveira and Nachman (2018), arXiv:1712.10321 [2] https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-SOFT-PUB-2018-001.

© CERN

6

[1] Paganini, de Oliveira and Nachman (2018), arXiv:1712.10321 [2] https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-SOFT-PUB-2018-001.

VAEs to Discrete VAEs

Approximate posterior distribution using during autoencoding $q_{\phi}(\mathbf{z}|\mathbf{x},e)$

Independence assumption

No independence assumption

VAEs to Discrete VAEs

Factorial Normal Gaussian prior

- Computationally efficient sampling
- Independence assumption

Trainable Restricted Boltzmann Machine prior

 Computationally expensive block Gibbs sampling

Why Discrete VAEs ?

1. More expressive latent space

Better performing generative model

2. Prospect of Quantum VAEs

- Replace the classical Restricted Boltzmann Machine (RBM) prior with a Quantum Boltzmann Machine (QBM) prior
- Use Quantum Annealing to generate latent variable samples instead of Block Gibbs sampling

EM Calorimeter Shower Dataset

 e^+,γ,π^+

- $1 < E < 100~{\rm GeV}$
- 100,000 events per particle type

Inspired by ATLAS LAr EM Barrel Calorimeter Geometry

DVAEs for Calorimeter Simulation

Autoencoding model

Generative model

Results : Shower shape variables

		Le 10 ²
		10 ¹
Shower shape variable	Notes	100
$E_i = \sum_{\text{pixels}} \mathcal{I}_i$	Energy deposited in the i^{th} layer of calorimeter	Lay 10 ⁶
$E_{\text{tot}} = \sum_{i=0}^{2} E_i$	Total energy deposited in the elec- tromagnetic calorimeter	10 ⁵
$f_i = E_i / E_{\rm tot}$	Fraction of measured energy deposited in the i^{th} layer of calorimeter	Events / Bin
Depth-weighted total energy, $l_d = \sum_{i=0}^2 i \cdot E_i$	The sum of the energy per layer, weighted by layer number	10 ¹ 10 ⁰ 10 ⁻⁴
Shower Depth, $s_d = l_d/E_{tot}$	The energy-weighted depth in units of layer number	

Energy spectra

Energy conditioning

 $1 < E < 100 {
m GeV}$

 $E \in [1, 25, 50, 100, 150]~{
m GeV}$

- Compelling peak at 150 GeV for positrons and photons
- Uncontained charged pions

Sparsity (Fraction of cells hit) per layer

- Previously observed to be challenging to reproduce

- [1] Paganini, de Oliveira and Nachman (2018), arXiv:1712.10321
- Bimodal distribution for charged pions matches well

Shower Images

Generated samples recover :

- Wide variety of patterns of activated and non-activated cells
- Centrality and lateral width of the clusters
- Longitudinal behaviour of the shower Most of the energy deposited in the middle layer

Summary and Future Outlook

- **DVAEs** show promising results for Calorimeter shower simulation
 Able to match distributions of "shower shape" variables
- Latent generative process modelled by a **Restricted Boltzmann Machine (RBM)** is still computationally expensive
- Prospect of using QVAEs with latent generative process modelled by a Quantum Boltzmann Machine (QBM) allow us to use quantum annealers as sampling devices for the latent variables

∂ TRIUMF

Thank you Merci

www.triumf.ca

Follow us @TRIUMFLab

Discovery, accelerated

Backup

ATLAS at Large Hadron Collider

General-purpose detector

Scientific goals :

- 1. Higgs Boson Measurements
- 2. Physics beyond the Standard Model (BSM)
- 3. Rare processes e.g. top quark production

Calorimeters

Measure the energy of the particles through :

- 1. Electromagnetic showers
- 2. Hadronic showers

Cascading process

Discrete VAEs (in practice)

Towards QVAE

Classical RBM

$$\begin{aligned}
p_{\theta}(\mathbf{z}) &\equiv e^{-E_{\theta}(\mathbf{z})}/Z_{\theta}, \quad Z_{\theta} \equiv \sum_{\mathbf{z}} e^{-E_{\theta}(\mathbf{z})}, \\
E_{\theta}(\mathbf{z}) &= \sum_{l} z_{l}h_{l} + \sum_{l < m} W_{lm}z_{l}z_{m}, \quad \mathbf{h}, \mathbf{W} \in \{\theta\}
\end{aligned}$$
Markov Chain Monte Carlo sampling

$$\begin{aligned}
b_{l} &= \beta_{eff}^{*}h_{l}, \quad W_{lm} = \beta_{eff}^{*}J_{lm}, \quad \Gamma_{l} = \beta_{eff}^{*}\Gamma^{*}, \\
\beta_{eff} &\equiv B(s^{*})/\beta_{phys}, \quad \Gamma^{*} \equiv A(s^{*})/B(s^{*}). \quad (17)
\end{aligned}$$
Quantum Annealing

$$\begin{aligned}
\mathcal{H}(s) &= A(s)\sum_{l} \sigma_{l}^{x} + B(s) \left[\sum_{l} \sigma_{l}^{z}h_{l} + \sum_{l < m} J_{lm}\sigma_{l}^{z}\sigma_{m}^{z}\right]
\end{aligned}$$

DVAE to QVAE Challenges : Effective temperature estimation

Quantum BM

Effective temperature
$$\beta_{eff}^*$$

$$b_l = \beta_{eff}^* h_l, \quad W_{lm} = \beta_{eff}^* J_{lm}, \quad \Gamma_l = \beta_{eff}^* \Gamma^*, \\ \beta_{eff} = B(s^*)/\beta_{phys}, \quad \Gamma^* \equiv A(s^*)/B(s^*). \quad (17)$$
Quantum annealer operates in a thermal environment
$$\beta_{eff}^* \text{ is not fixed}$$
Quantum Annealing
$$\mathcal{H}(s) = A(s) \sum_l \sigma_l^x + B(s) \left[\sum_l \sigma_l^z h_l + \sum_{l < m} J_{lm} \sigma_l^z \sigma_m^z\right]$$

DVAE to QVAE Challenges : Qubit Connectivity

Chimera connectivity (D'Wave 2000Q)

Quantum BM

$$p_{\theta}(\mathbf{z}) \equiv \operatorname{Tr}[\Lambda_{\mathbf{z}}e^{-\mathcal{H}_{\theta}}]/Z_{\theta}, \quad Z_{\theta} \equiv \operatorname{Tr}[e^{-\mathcal{H}_{\theta}}],$$
$$\mathcal{H}_{\theta} = \sum_{l} \sigma_{l}^{x}\Gamma_{l} + \sum_{l} \sigma_{l}^{z}h_{l} + \sum_{l < m} W_{lm}\sigma_{l}^{z}\sigma_{m}^{z}, \quad \Gamma, \mathbf{h}, \mathbf{W} \in \{\theta\},$$

Quantum Annealing

$$\mathcal{H}(s) = A(s)\sum_{l}\sigma_{l}^{x} + B(s)\left[\sum_{l}\sigma_{l}^{z}h_{l} + \sum_{l < m}J_{lm}\sigma_{l}^{z}\sigma_{m}^{z}\right]$$

Maximum qubit connectivity : 6

DVAE to QVAE Challenges : QPU Resources

	Positron e ⁺	Photon γ	Pion π^+
Model Type	Model II	Model IV	Model IV
Learning Rate	10^{-4}	0.5×10^{-4}	10^{-4}
Epochs	100	100	100
Batch Size	100	100	100
Gibbs Steps	50	60	50
Latent smoothing temperature, τ_z	1/5	1/7	1/5
Output mask smoothing temperature, τ_{xm}	1/5	1/5	1/9

Parameter	Value
Model	Advantage
Graph Size	P16
Qubits	5436
Couplers	37440
Qubit Temperature (mK)	15.8 ± 0.5
M _{AFM} ¹ (pH)	1.951
Average Single Qubit Thermal Width (Ising units)	0.196
FM Problem Freezeout (scaled time)	0.066
Single Qubit Freezeout (scaled time)	0.609
Annealing Time Range (μs)	1.0 to 2000.0
Readout Time Range ² (μs)	18.0 to 131.0
Programming Time ³ (μs)	~ 25100
Readout Error Rate ⁴	≤ 0.001

NAME (CHIP ID)	DESCRIPTION	DEFAULT ANNEALING TIME (µs)	t - Samples - I <mark>20</mark> 0
Advantage_system1.1	Advantage system	DEFAULT PROGRAMMING THERMALIZATION (µs)	1000
QUBITS 5760	SUPPORTED PROBLEM TYPES ising, qubo	DEFAULT READOUT THERMALIZATION (µs)	0
TOPOLOGY	TAGS	MAX ANNEAL SCHEDULE POINTS	12
[16] pegasus		MAX H GAIN SCHEDULE POINTS	20
VFYC			
false		NUMBER OF READS RANGE	1 to 10000
ANNEAL OFFSET STEP			-18 to 15
-0.00017565852000668507		PROBLEM RUN DURATION RANGE (µs)	0 to 1000000
ANNEALING TIME RANGE (μs) 1 to 2000		PROGRAMMING THERMALIZATION RANGE (µs)	0 to 10000
ANNEAL OFESET STEP PHIO		READOUT THERMALIZATION RANGE (µs)	0 to 10000
0.00001486239425109	832		
		H RANGE	-2 to 2
		H GAIN SCHEDULE RANGE	-4 to 4
		J RANGE	-1 to 1
		EXTENDED J RANGE	-2 to 1

Per batch : 25.1 ms (Programming time) + [0.02 (Default annealing time) + 0.131 (Readout time)]*100 (Batchsize) ms = 40.2 ms (no delay) 100000 events / particle type = 1000 batches

Per epoch : 40.2 s (no delay) Per particle type : 4020 s (no delay)

[1] Paganini, de Oliveira and Nachman (2018), arXiv:1712.10321 [2] https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-SOFT-PUB-2018-001.

[1] Paganini, de Oliveira and Nachman (2018), arXiv:1712.10321 [2] https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-SOFT-PUB-2018-001.

ATLAS-VAE/GAN [1]

- Shape of the energy spectra of samples produced by DGMs matches
- No explicit energy conservation - DGMs produce showers with higher energy than incident particle energy

[1] Paganini, de Oliveira and Nachman (2018), arXiv:1712.10321 [2] https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-SOFT-PUB-2018-001.

DVAEs for Calorimeter Simulation : Preliminary

Autoencoding model

Generative model

Generative Models

