Hadronic Shower Substructure Reconstruction with Graph Neural Networks

14th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"

Vladimir Bocharnikov (DESY) 23 Nov 2021

HELMHOLTZ RESEARCH FOR GRAND CHALLE

Hadronic showers

General properties

- Hadronic shower development is rather complex:
 - Narrow EM core component from π^0/η
 - Surrounding halo dominated by charged hadrons
 - Large event-by-event fluctuation of EM/HAD ratio
 - Response to EM and HAD components is different in non-compensating calorimeters
 - Invisible energy as binding energy, nuclear recoil, neutrinos + late component
 - ➡ Limited hadronic energy resolution
 - Detailed simulation is challenging
- Highly granular calorimeter prototypes
 - Imaging capabilities provide detailed calorimetric images
 - Real test beam data for crosschecks and development of data-driven algorithms

CALICE AHCAL

Test beam prototype.

39 active layers of 24x24 scintillator tiles ($3x3 \ cm^2$ each) with individual SiPM readout. Active layers alternate with $\sim 2 \ cm$ steel absorber.

In total: ~22000 channels (<1‰ dead channels), ~4 λ, ~38X0

Beam particles: muons, electrons, pions

Energy range: 10-200 GeV in 10-40 GeV steps

O(1M) hadron events per energy point

Calorimeter vision for hadronic showers

Ultimate goal and general approach

Set of hits in highly granular calorimeter

Potential applications of hit to secondary particle association:

- Shower separation algorithms:
 - Recombination of secondaries between overlaid showers
- Validation of simulation performance:
 - Comparison of global physical distributions
 - Shower description on single event basis is possible

Particle interaction tree

Graph representation of calorimeter event

First steps

Event graph:

- O Nodes calorimeter hits
- O Node features position, energy, (time)
- Edges neighbours within distance < R_{max} (Radius graph)
- Edge weights 1 if pair of hits belong to same **fundamental object** (e/m sub-shower, track), otherwise 0
- O ML objective predict edge weights given the radius graph of event

<u>GraphSAGE</u> (SAmple and aggreGatE) architecture (Graph neural network model (GNN)):

neighbours

Get graph context embeddings for node using aggregated information

Predict edge score for each pair of connected nodes using embedded features

DESY. | Hadronic shower substructure reconstruction with GNN, 23 Nov 2021 | Vladimir Bocharnikov

Truth information from Monte-Carlo

Algorithm to find truth e/m objects

Simulations

Geant4 (v10.03.p02) QGSP_BERT_HP using CALICE AHCAL geometry

Pure energy deposition in cells (before digitalisation and reconstruction)

Truth electromagnetic sub-shower definition:

"Electromagnetic" particles: e^{\pm} , γ , π^{0} , η

Energy threshold - 0.1GeV (arbitrary now)

If MC particle is "electromagnetic", all it's "electromagnetic" daughters compose e/m shower are removed from further consideration

Corresponding simulated hits compose sub-shower, 0.5MIP cut: E_{hit} >0.25MeV

MC history for **ionising particles** is more complicated to easily define individual objects (tracks). Work in progress

Datasets and model parameters

Edge score model

Train&test dataset:

- ~6000 MC event graphs (50/50 split)
 - Pure energy deposition in calorimeter cells (before digitalisation and reconstruction)
 - 10-100 GeV pion samples
- ➡ Radius graphs with calorimeter hit nodes (x,y,z,E_{hit}) *R_{max}* = **59** *mm*

Model:

GraphSAGE GNN

8 layers with 16 hidden channels + 1 linear output layer to convert node embeddings to edge scores

Prediction of edge scores

Binary cross entropy loss

Example of output for test event

Preliminary results for single test event

2650 graph edges

,0 ×, m_m 100 200

progress...

FN

- TP

- FP

TP

1000 800 600Ê

300

-1004 -200

300-300

Electromagnetic fraction of hadronic showers

Preliminary results for 10,20,30,40,60,80 GeV pions

- Higher MPV for Fem than expected
 - ➡ Non-e/m contributions to the hits are not taken into account
- Less pronounced tails for F_{em} prediction than for MC truth

Work in progress...

Energy correction

Simple example of using e/m fraction reconstructed by GNN

Correlation example for 40 GeV pion

- Well pronounced correlation between E_{sum} and F_{em} observed for all energies
- For each energy point simultaneous gaussian fit is performed to extract the correction line

Energy resolution estimation

- Simple linear correction gives resolution improvement of ~6-20%
 ⇒ to be compared with existing energy reconstruction methods
- Tests on test beam data are ongoing
- Promising resolution improvement for more complex compensation algorithms using reconstructed EM information

Software compensation method

Example for CALICE combined setup ECAL+AHCAL+Tailcatcher tested in 2009

- h/e response compensation by assigning energy-dependent weights to hit energies (⇒local energy density)
 - Higher weights for low energy hits dominated by HAD component
 - Lower weights for high energy hits dominated by EM component
- 8 bins for hit energies
 - · Polynomial fit to get energy dependent weight for each bin
- ➡ Energy resolution improvement 10-20%
- Disadvantages: limited to fit energy range, polynomial dependence has no physics motivation, additional topological information of hit context is not used

Energy reconstruction using predicted EM information Outlook

Ongoing experiment:

- Test if use of predicted edge weights improves the energy resolution
- Almost same GNN as for EM structure prediction:
 - 1 GraphSAGE layer replaced with <u>ARMAConv</u> (capable to exploit edge attributes during message passing), output has shape [N_{nodes}]
 - Train using predicted EM edge weights
 - Compare resolution for the test sample using predicted EM attributes or random edge weights

Work in progress...

Experiment:

Towards distinct secondary particle reconstruction

Another outlook

Motivation:

- In HAD showers we can have many EM sub showers at first HAD interaction (overlaid) and later in the had cascade (displaced)
- Further look into the structure of EM fraction:
 - Reconstruct distinct particle components
 - No easy rule-based algorithm to merge overlaid sub showers on MC truth level ➡ go unsupervised!
 - Test Bayesian Gaussian Mixture model with Dirichlet process on point clouds from calorimeter events
 - <u>SKlearn implementation</u> is tested, own flexible <u>Pyro</u> implementation is planned
 - ➡ Tune training dataset for substructure GNN
 - e.g. energy thresholds (some EM sub showers have topology closer to ionising tracks)

Applying Bayesian GM to EM component of had showers

Truth EM component

- SKlearn implementation can handle only scatter plots ٠
- To keep hit energy information, artificial scatter plot is produce: ٠
 - 10 points per MIP ٠
 - uniformly distribute within cell volume: ±15mm,±15mm,±1mm ٠
 - Normalise coordinates: (-0.36m,0.36m) (-0.36m,0.36m) (0m,1m) ٠

- Max number of components = 10,
- Object size can be optimised by modifying covariance prior
- Clusters can be filtered by likelihood and energy density

DESY. | Hadronic shower substructure reconstruction with GNN, 23 Nov 2021 | Vladimir Bocharnikov

Applying Bayesian GM to EM component of had showers

Truth vs reco EM component

- Visual similarity for main gaussian component
 - Hints of agreement for E_{sum} and E_{density} on several hundred events between truth and predicted EM fraction
- Smaller clusters are more challenging
- ➡ Room for improvement

DESY. | Hadronic shower substructure reconstruction with GNN, 23 Nov 2021 | Vladimir Bocharnikov

- Single hadronic shower substructure can be reconstructed using imaging capabilities of highly granular calorimeters
- GNN reconstruction of electromagnetic components shows promising results
 - Reconstructed EM information can be used to improve hadronic energy resolution
 - EM structure-aware software compensation model is under development
- Prospects of distinct particle reconstruction are discussed

 $C = \langle F_{em} \rangle / (p_1 \cdot F_{em} + p_0)$

Unified correction

Getting P_{beam}-independent correction

Work in progress...

Correction parameters as a function of <E_{sum}>:

- p_{0} , p_{1} and $\langle F_{em} \rangle$ are calculated for each event from the observed energy using resulting fits
 - More energy points need to be included to check the overfitting
 - Parameter uncertainties are not taken into account
 - Performance decrease for resolution ~3%

DESY. | Hadronic shower substructure reconstruction with GNN, 23 Nov 2021 | Vladimir Bocharnikov

Dealing with background clusters

- Quality metrics (optimised on several events)
 - likelihood > 2 (first guess)
 - energy density in ellipsoid [MIP/mm³] > 20 (first guess)

