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» Anomaly Search Motivation

Majority of searches for new physics rely heavily on both signal and SM background
models
Impossible to cover all models/phase space regions with a dedicated search
→Needmodel-independent searches
Test scenario:
→Dijet anomaly search X→YZ, Y & Z decaying hadronically
→Look for resonant new physics with anomalous jet substructure

Ultimately want to tell this:
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» Anomaly Search Benchmark Dataset

∗ Benchmark: LHC Olympics 2020 challenge R&D
dataset (arxiv:2101.08320)

∗ Background: 1M simulated QCD multijet events
∗ Signal: 100k W’→YZ events where Y→qq and
Z→qq

∗ mW′ = 3.5 TeV,mY = 500GeV,mZ = 100GeV
∗ Input: 4 variables

∗ Lower jet mass mj1
∗ mass difference ∆m1,2

∗ Jet subjettiness ratios τ21,j1 and τ21,j2

arXiv:2001.04990
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» Anomaly Search General Principle

Given distributions of signal pS(x) and background
pB(x) in some set of variables x,
Neyman-Pearson-Lemma:
→best test based on likelihood ratio

Problem: Signal is buried under large amount of
background
→We can’t estimate pS(x) directly
The best we can do: Estimate pS+B(x|SR) in ”Signal
Region” and pB(x|SB) from region without signal
(”Sidebands”)
→Conditional variable containing resonance: mjj

We need to take LR in SR:
→Interpolate pB(x|SB) into SR
→Construct estimate of LR: pS+B(x|SR)pB(x|SR)

m

SB SB

SR

Get estimate of LR using:
→classification
→density estimation
(Normalizing Flows)
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» Normalizing Flows Introduction

∗ Flows based on random variable transformation
∗ f : U→ X; p(x) = p(u)

∣∣∣df(u)du

∣∣∣−1

∗ Learn invertible mapping f from latent variables u to data x
∗ Flow: stack many invertible transformations fi: f = fk ◦ ... ◦ f2 ◦ f1

p(x) = p(f−1(x))
∏
i

∣∣∣∣∣det

(
∂f−1
i
∂x

)∣∣∣∣∣ = p(u)
∏
i

∣∣∣∣det
(
∂fi
∂u

)∣∣∣∣−1

Generate new samples

Evaluate probability/likelihood, train flow
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» Anomaly Search Classification & Density Estimation

DOI:10.1103/PhysRevD.101.075042DOI:10.1007/JHEP10(2017)174

Classification Without Labels (CWoLa) Anomaly Detection with Density
Estimation (ANODE)
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train classifier

evaluate in
signal region

+ Simple classification
task

+ Basic DNN
architecture

− Highly dependent on
correlations between
x andm
→Variables x need to
be hand-picked

train "inner density
estimator" on SR

evaluate on
signal region

m

SB SB

SR

train "outer density
estimator" on SB

evaluate on
signal region

+ Direct estimation of
conditional densities

+ Easy to interpolate pbg
+ Robust against

correlations between x
andm
→Arbitrary choice of x

− Computationally intense
− Estimation of signal

contribution difficult
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» Anomaly Search CATHODE

Classifying Anomalies THrough Outer
Density Estimation (CATHODE)

+ Only one density estimator needed
+ Due to interpolation: robust against

correlations between x andm
→Arbitrary choice of x

+ Final tagger based on simple classification
task

+ No density estimator for signal
contribution needed

− Computationally intense

arxiv:2109.00546 [6/9]

https://arxiv.org/abs/2109.00546


» CATHODE Performance

∗ Most important performance measure:
significance improvement
characteristic (SIC)

∗ ”Supervised” training using
signal/background labels
→overall upper performance limit

∗ ”Idealized AD”: distinguish actual sample
vs. background-only sample from signal
region →upper limit for unsupervised
anomaly search

∗ CATHODE shows highest SIC amongst
non-idealized anomaly taggers

∗ Performance reaches idealized AD limit
∗ Significance improvement about factor 14

SIC =

S√
B

∣∣∣cut
S√
B

∣∣∣no cut =
TPR√
FPR

arxiv:2109.00546
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» CATHODE Robustness Against Correlations

∗ Study impact of correlations between x and
mjj

∗ Introduce artificial correlations
∗ Add 10% of correspondingmjj value tomj1
and∆m1,2

∗ All methods suffer performance
→”Smearing” of variables

∗ CWoLa performance completely breaks
down

∗ CATHODE retains good performance, similar
to idealized AD

arxiv:2109.00546
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» Summary

∗ Investigation of dijet resonances with anomalous jet substructure using
normalizing flow–based density estimation & classification

∗ Introduction of new method: CATHODE that combines the advantages of purely
density estimation–based (ANODE) and classification-based (CWoLa) approaches

∗ CATHODE outperforms all other non-idealized anomaly detectors
∗ Performance similar to idealized anomaly detector
∗ Robust against correlations between features x and conditional variablemjj
∗ Future studies

∗ Other datasets/topologies
∗ Study sensitivity for different types of anomalies (e.g. very broad resonances)
∗ Studies using more (low-level) features
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» CATHODE Performance

∗ Comparison for different amounts of signal
injected

∗ CATHODE outperforms other AD methods
significantly down to a S/B as low as 0.3%

∗ CATHODE achieves similar performance as
idealized anomaly detector

∗ Below 0.2% S/B: even idealized AD cannot
raise significance above 3σ
→Too limited number of data points in the
signal region

arxiv:2109.00546
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» CATHODE Training & Sampling

arxiv:2109.00546

∗ Flow trained for 100 epochs
∗ Model ensembling: pick 10 epochs with
lowest validation loss

∗ Drawmjj values from a KDE in signal region
∗ Use these values as conditional and sample
from density estimator
→Interpolation into SR

∗ We can oversample to produce more
samples than we have in data

∗ Background densities are modelled well by
flow
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» Normalizing Flows Introduction

∗ Flows based on random variable transformation
∗ f : U→ X; p(x) = p(u)

∣∣∣df(u)du

∣∣∣−1

∗ Multivariate case: scale with Jacobian determinant
∗ Flow: repeat (invertible) transformation to get complex distributions

p(x) = p(f−1(x))
∏
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Generate new samples

Evaluate probability/likelihood, train flow
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» Anomaly Search Strategy

CASE (CMS Anomaly SEarch):
Explore different techniques, all involving ML models trained directly on data!
Currently investigated methods:

∗ (Variational) autoencoders
∗ Weak supervision (CWoLa hunting, Tag N’ Train)
∗ Quasi-anomalous knowledge (QUAK)
∗ Density estimation & classification (CATHODE)

General procedure:

Real Data Trained Model Anomaly Metric Cut

SIG
like

BG
like

BG
estimation

Bump Hunt New Physics
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» Autoregressive Flows Introduction

Autoregressive property:

p(x) =
∏
i p(xi|x1:i−1)

Conditional densities depend on trainable
parameters:

p(xi|x1:i−1) = N (xi|µi, (expαi)
2)

µi = fµi(x1:i−1)

αi = fαi(x1:i−1)

→Earlier variables must not depend on
later variables
→Solution: stack transformations into a
normalizing flow, change ordering of the xi
aǒter each transformation

...x1 x2 xi-1 xi ... xN

...u1 u2 ui-1 ui ... uN

αi μi

complex
distribution

base
distribution

Autoregressive property →Jacobian is upper
triangular∣∣∣∣det

(
∂f
∂u

)∣∣∣∣ = exp

(∑
i
αi

)
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» Masked Autoencoder for Distribution Estimation (MADE) Architecture

∗ DNN architecture to implement a single
fi in autoregressive flows (1502.03509)

∗ Compute α and µ in one forward pass

∗ Outputs αj and µj only connected to
inputs {x1, ..., xj−1}→autoregressive
property

∗ No connection dropped for conditional
inputmjj

mjj
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https://arxiv.org/abs/1502.03509


» Anomaly Detection with Density Estimation (ANODE) Architecture

∗ Stack MADE networks to build ”Masked
Autoregressive Flow” (MAF)

∗ Learn tranformation u = f−1(x) from
input features x to u ∼ N (0, I)

∗ Compute p(x) with normalizing flow
from p(u)

∗ Minimize NLL loss L = −log(p(x))
∗ Architecture used for both density
estimators
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