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» Anomaly Search Motivation

Majority of searches for new physics rely heavily on both signal and SM background
models

Impossible to cover all models/phase space regions with a dedicated search
->Need model-independent searches

Test scenario:

->Dijet anomaly search X-YZ, Y & Z decaying hadronically
- Look for resonant new physics with anomalous jet substructure

from any of these:
Ultimately want to tell this:
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» Anomaly Search Benchmark Dataset

105 s Background
3 signal

Benchmark: LHC Olympics 2020 challenge R&D
dataset (arxiv:2101.08320)

Background: 1M simulated QCD multijet events
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https://arxiv.org/abs/2101.08320
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» Anomaly Search

Given distributions of signal ps(x) and background
ps(X) in some set of variables X,
Neyman-Pearson-Lemma:

->best test based on likelihood ratio

Problem: Signal is buried under large amount of
background
-We can't estimate ps(x) directly

The best we can do: Estimate psg(X|SR) in "Signal
Region” and pg(x|SB) from region without signal
("Sidebands”)

-~>Conditional variable containing resonance: mj;

We need to take LR in SR:
- Interpolate pg(x|SB) into SR

. . Ps1B(X|SR)
->Construct estimate of LR: P (XISR)

General Principle

SR

Get estimate of LR using:

> classification
->density estimation
(Normalizing Flows)
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» Normalizing Flows Introduction

Flows based on random variable transformation
s

f2U =X p(x) = p(u) | %

Learn invertible mapping f from latent variables u to data x

Flow: stack many invertible transformations f;: f=fro...ofa o fy
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Evaluate probability/likelihood, train flow [4/9]



» Anomaly Search (lassification & Density Estimation

Classification Without Labels (CWoLa) Y

Estimation (ANODE)
= o SB SB : e
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» Anomaly Search CATHODE

SB SB
Classifying Anomalies THrough Outer
Density Estimation (CATHODE) o
Only one density estimator needed |
Due to interpolation: robust against e
Pog(X|SB)

correlations between X and m

. . take a sample of l
—)Arbltrary choice of x events from SR

sample from interpolated

Final tagger based on simple classification density estimator
Pog(X[SR)
task I
No density estimator for signal GEEG [EE®
contribution needed %g%
Computationally intense ©l®© l®
label=1 label=0

train classifier } [6/9]



https://arxiv.org/abs/2109.00546

» CATHODE

Most important performance measure:
significance improvement
characteristic (SIC)

"Supervised” training using
signal/background labels

-overall upper performance limit

"Idealized AD": distinguish actual sample
vs. background-only sample from signal
region > upper limit for unsupervised
anomaly search

CATHODE shows highest SIC amongst
non-idealized anomaly taggers
Performance reaches idealized AD limit

Significance improvement about factor 14
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» CATHODE

Study impact of correlations between x and

mj;

Introduce artificial correlations

Add 10% of corresponding mj; value to mj;
and Aml’g

All methods suffer performance
->"Smearing” of variables

CWolLa performance completely breaks
down

CATHODE retains good performance, similar
to idealized AD

Significance Improvement

Robustness Against (orrelations
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https://arxiv.org/abs/2109.00546

» Summary

Investigation of dijet resonances with anomalous jet substructure using
normalizing flow-based density estimation & classification

Introduction of new method: CATHODE that combines the advantages of purely
density estimation-based (ANODE) and classification-based (CWolLa) approaches

CATHODE outperforms all other non-idealized anomaly detectors
Performance similar to idealized anomaly detector

Robust against correlations between features X and conditional variable mj;

Future studies

Other datasets/topologies
Study sensitivity for different types of anomalies (e.g. very broad resonances)
Studies using more (low-level) features

[9/9]



BACKUP



» CATHODE

« Comparison for different amounts of signal
injected
+ CATHODE outperforms other AD methods
significantly down to a S/B as low as 0.3%
« CATHODE achieves similar performance as
idealized anomaly detector
+ Below 0.2% S/B: even idealized AD cannot
raise significance above 30
->Too limited number of data points in the
signal region

Maximum Achieved Significance

SIWB

2.14 1.35 1.02

Performance

0.68 0.51 0.34 0.17

175
15.0
12.5
10.0
7.5
LX) TEITTRTRTITIRTRTRRRRRRS b o S My (0 ) | CPPPRPRIPI NPT 5
. N
—%— CATHODE
0.04 — CWola —»— Supervised
g —— ANODE —— Idealized AD
0.60 040 030  0.200.150.100.05
S/B (%)
arxiv:2109.00546

[1/7]


https://arxiv.org/abs/2109.00546

» CATHODE

Flow trained for 100 epochs

Model ensembling: pick 10 epochs with
lowest validation loss
< Draw mj; values from a KDE in signal region

< Use these values as conditional and sample
from density estimator
-Interpolation into SR

We can oversample to produce more
samples than we have in data

« Background densities are modelled well by
flow

arxiv:2109.00546 > **
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» Normalizing Flows Introduction

Flows based on random variable transformation
. ! _ df(u) |
FiU= X p(x) = p(u) | %4

Multivariate case: scale with Jacobian determinant

Flow: repeat (invertible) transformation to get complex distributions

of 1 AV
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Evaluate probability/likelihood, train flow [3/7]



» Anomaly Search
CASE (CMS Anomaly SEarch):

Strategy

Explore different techniques, all involving ML models trained directly on data!

Currently investigated methods:
(variational) autoencoders
Weak supervision (CWolLa hunting, Tag N’ Train)
Quasi-anomalous knowledge (QUAK)
Density estimation & classification (CATHODE)

General procedure:
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» Autoregressive Flows

Autoregressive property:

p(x) = IT; p(XilX1:i-1)

Conditional densities depend on trainable
parameters:

P(Xilx1i—1) = N (x|, (exp )?)

ti = fui (X1.-1)

@ = fo;(X1:i-1)

- Earlier variables must not depend on
later variables

->Solution: stack transformations into a
normalizing flow, change ordering of the X;
after each transformation

Introduction
Xj = f(uj) = u; - exp(cv) + pi
Complex o0 0 o000 X
distribution b]

base

U U eeoo U'_ (XX ] u
distribution ! 2 I 1. N

Autoregressive property -*Jacobian is upper
triangular

(B-=(2)




» Masked Autoencoder for Distribution Estimation (MADE) Architecture
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DNN architecture to implement a single
fi in autoregressive flows (1502.03509)

Compute o and g in one forward pass
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https://arxiv.org/abs/1502.03509

» Anomaly Detection with Density Estimation (ANODE)

x (=up)

Stack MADE networks to build "Masked
Autoregressive Flow” (MAF)

Learn tranformation u = f~1(x) from

input features X to u ~ N(0,1)

Compute p(x) with normalizing flow
from p(u)

Minimize NLL loss £ = —log(p(x)) MADE block 15 X

Architecture used for both density
estimators ts(=u)
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