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Introduction

I ATLAS experiment at the LHC

I Initial data rate: ∼ 60 TB/s!
→ trigger system

I Data written to disk: ∼ 300 MB/s

I Data distributed & analyzed via
Worldwide LHC Computing Grid
(WLCG)
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Introduction

I WLCG: three different levels
I Tier-0: CERN data centre
I Tier-1: 13 computer centres with

large storage
I Tier-2: ∼ 160 smaller storage sites

I Tier-2 site in Freiburg: ATLAS-BFG
I 2.5 PB of disk storage
I Local users of 4 research groups

I Total ATLAS disk storage
I ∼ 235 PB

I After start of High-Luminosity LHC:
≥ 2.5 EB in 2030

I Huge amounts of disk space required
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Introduction

I ATLAS plans
I Centralize data storage

I Huge storage centers with long-term storage

I Compute sites without local long-term storage

I How get compute sites the data?
→ implement a caching setup

I What is caching?
→ local, temporary storage of data

I Why caching?
I Local: fast access for subsequent requests

I Temporary: limited resources for long-term
storage, automatic deletion if not accessed again
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Caching in Freiburg

I Caching setup in Freiburg with XRootD

I Starting point: sandbox implementation by group of Dr. Kilian Schwarz at
Uni. Frankfurt/GSI

I Ingredients:
I Client

I Virtual machine on node of NEMO HPC cluster

I Default client configuration

I Non-evasive setup of caching via environment variables

I Enable and configure XrdClProxyPlugin
I Proxy server

I Virtual machine independent from NEMO cluster

I XRootD server daemon configured for disk caching and as ”forward proxy”
I Cache space

I beeGFS file system in Freiburg
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Workflow of caching setup

I Client:
I Requests data from external site

I XrdClProxyPlugin: redirects request
to proxy server

I Proxy server:
I Checks if data is already in cache

I Yes:
Forwards client to location in cache

I No:
Forwards client to external site and
downloads data to cache
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Benchmarking

I Python script with ROOT module

I ’Pseudo analysis’, implements features of typical user analysis:
I Open file

I Retrieve data

I Loop over events

I Fill information in histograms

I Write histograms to disk

I Output: information in JSON format
→ visualize with pandas & Matplotlib
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Benchmarking

I Access configurations:
I Caching without file in cache space
→ caching setup, file read and downloaded from external site

I Caching with file in cache space
→ caching setup, file read from local beeGFS

I Local access
→ caching setup not active, file read from local beeGFS

I External access
→ caching setup not active, file read from external site

I ATLAS sites
I KIT (Karlsruhe)

I LRZ (Munich)

I TRIUMF (Vancouver, Canada)

I BNL (Brookhaven, USA)

I DESY (Hamburg)

I UNI-FREIBURG (Freiburg)

I For each setup: vary file sizes and
number of events
I 1.3 GB, 4.9 GB, 13 GB (s, m, l)

I 1, 100, 1000, 50k,
200k (only m & l), 500k (only l)

I Repeat each test multiple times
→ mean value of elapsed time + standard deviation
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Results - Overhead

I Direct access to KIT vs. access with caching setup
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I Both setups are comparable
→ no overhead by caching setup

I Results differ for number of events, but not for file sizes
→ merge file sizes in remaining figures
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Results - File in cache space

I Direct access to KIT/DESY/TRIUMF vs. file available in cache space

1 100 1000 50000 200000 500000
No. of events

100

101

102

103

104

105

Ti
m

e 
[s

]

Caching setup, file in cache, local cluster FS
No caching setup, KIT

1 100 1000 50000 200000 500000
No. of events

Caching setup, file in cache, local cluster FS
No caching setup, DESY

1 100 1000 50000 200000 500000
No. of events

Caching setup, file in cache, local cluster FS
No caching setup, TRIUMF

I Near sites (KIT/DESY): results are comparable

I Distant sites (TRIUMF): access to cached file faster
→ client profits from caching setup
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Results - Initial access

I Direct access to KIT/DESY/TRIUMF vs. access with caching setup
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I Near sites (KIT/DESY): results are comparable

I Distant sites (TRIUMF):
access with caching setup is faster for large numbers of events
I Download of file via proxy server faster than benchmark runtime

I After download: client reads file in cache → faster access

I Without caching setup: file access completely from external site
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Parallel requests

I All results so far: only single file request on proxy server at once
I Real world scenario: ∼500-1000 jobs at once

I How does the resource consumption scale for parallel file requests?

I Specs of proxy server:
VM on machine with Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60 GHz
I 4 vcores

I 8 GB RAM

I Tested number of parallel requests:
I 10, 25, 50, 75, 100, 128 ← client with 128 CPU threads

I 128 copies of large file at KIT

I Measure CPU load and memory consumption at proxy server during
benchmark with 10k events
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CPU load

I Subtract CPU load from other processes
I Derive mean and standard deviation
I Simple approximation via linear fit
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I 1 core ≡ 100 % → in this setup max. 400 %
I Projection for 1k parallel requests: at least ∼7 cores required
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Memory consumption

I Subtract memory consumption from other processes
I Derive mean and standard deviation
I Simple approximation via linear fit
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I Projection for 1k parallel requests: at least ∼11 GB RAM required
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Conclusion & Outlook

I Conclusion:
I Successfull implementation of caching setup for NEMO HPC cluster

I Clients: no additional installations, setup via environment variables

I Proxy server: setup on VM, independent from NEMO cluster

I Benchmark results
I Caching setup causes no overhead

I Access to already cached files is faster than access to distant external sites

I Initial access to files on distant external sites is faster with caching setup

I Caching is a good alternative to locally managed storage!

I Estimated requirements for 1k parallel file requests at least
I 7 cores
I 11 GB RAM
I Better: arrange several proxy servers as proxy cluster with one redirector

I Outlook:
I Perform full user analysis with caching setup

Thanks!
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