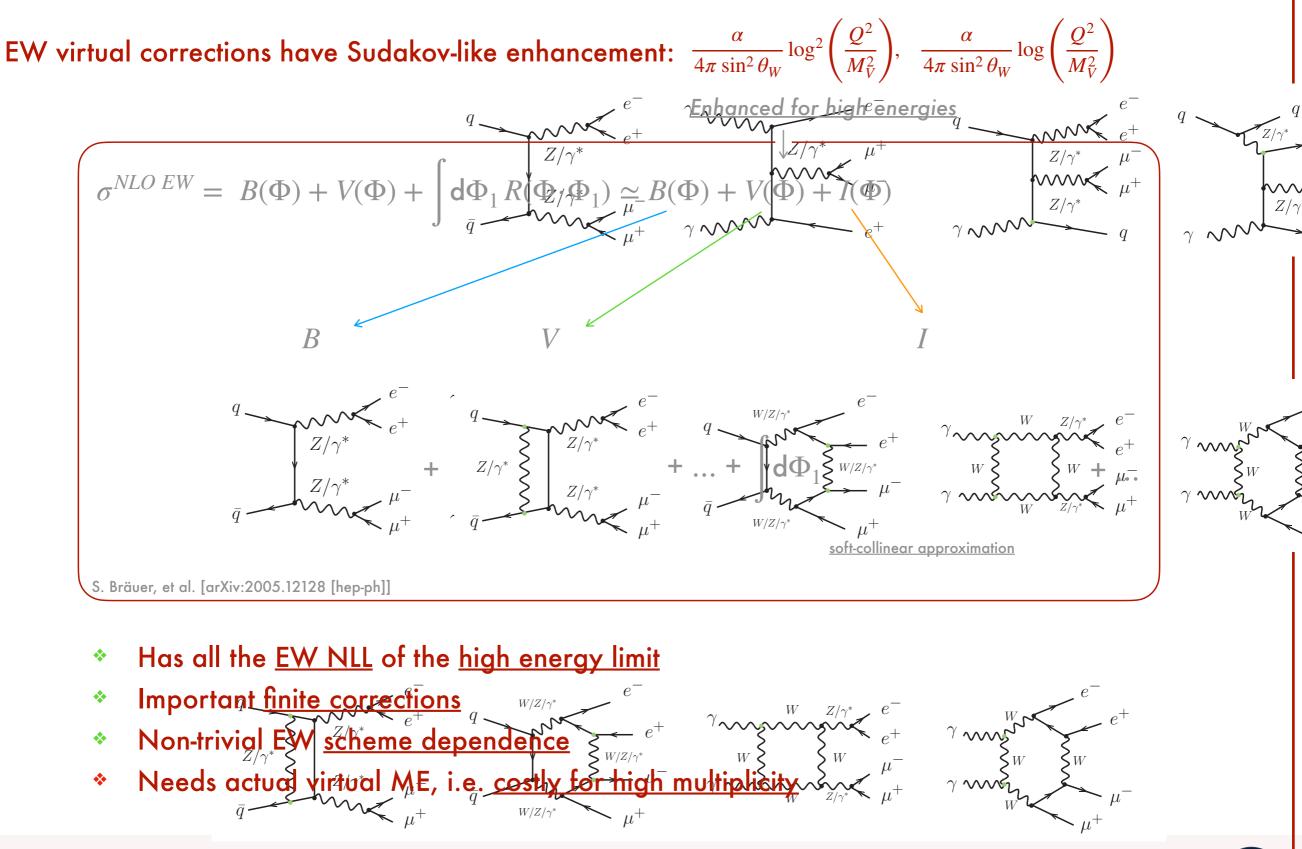


Presenter: Simon Luca Villani

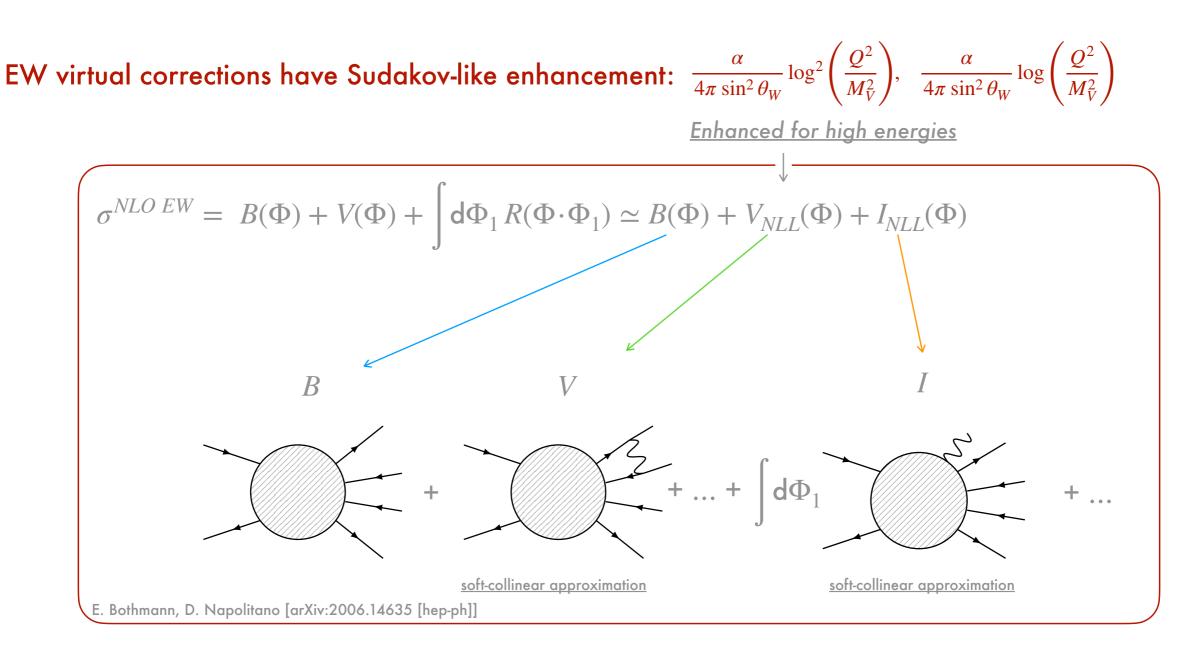
23.11.2021 Online Helmholtz Alliance Workshop

Overview


Corrections to $pp \rightarrow e^+e^-\mu^+\mu^- + jets$

- Approximated EW corrections (EWvirt, EWsud)
- * Fixed-order EW NLO
- * Multi-jet merged with EW corrections
 - * Structural analysis
 - Phenomenological results

Contributors list: Enrico Bothmann Davide Napolitano Marek Schrönherr Steffen Schumann SLV



Approximated EW corrections - EWvirt

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Approximated EW corrections - EWsud

- Has all the <u>EW NLL</u> of the <u>high energy limit</u>
- Sudakov logs can be factorized and then <u>exponentiated</u>
- Applicable to <u>any final state multiplicity</u>
- * Lacking of non-trivial scheme dependence and finite terms

Fixed-order EW NLO

ZZ

Generators/Tools Sherpa + OpenLoops/Recola

$pp \rightarrow$	$e^+e^-\mu^+\mu^-$	fiducial cross section	corrections to LO				
Scheme	Region	LO	NLO EW	$\rm LO{+}EW_{virt}{+}YFS$	$LO+EW_{sud}+YFS$	$\rm LO{+}EW^{exp}_{sud}{+}YFS$	$\rm NLO~EW + \rm NLL~EW^{exp}_{sud}$
$\overline{G_{\mu}}$	inclusive	$\boldsymbol{9.8189(2)\mathrm{fb}}$	-6.8%	-7.9%	-7.3%	-7.2%	-6.7%
$\alpha(M_Z^2)$		$10.928\mathrm{fb}$	-19.4%	-20.2%	-7.7%	-7.6%	-19.3%
$\delta^{\alpha(M_Z^2)}_{G_{\mu}}$		11.3%	-3.8%	-3.6%	10.8%	10.8%	-3.7%
G_{μ}	high energy	$4.27\cdot 10^{-3}\mathrm{fb}$	-42%	-45%	-39%	-33%	-36%

ZZ+1jet

$pp \rightarrow$	$e^+e^-\mu^+\mu^-j$	fiducial cross section	corrections to LO				
Scheme	Region	LO	NLO EW	$\mathrm{LO} + \mathrm{EW}_{\mathrm{virt}} + \mathrm{YFS}$	$\rm LO + EW_{sud} + YFS$	$\rm LO + EW_{sud}^{exp} + YFS$	NLO EW + NLL EW_{sud}^{exp}
$\overline{G_{\mu}}$	inclusive	$5.1698(1)\mathrm{fb}$	-6.6%	-8%	-6.9%	-6.7%	-6.4%
$\alpha(M_Z^2)$		$5.754\mathrm{fb}$	-19.2%	-21%	-6.9%	-6.7%	-19.0%
$\delta^{\alpha(M_Z^2)}_{G_\mu}$		11.29%	-3.7%	-3%	11.3%	11.3%	-3.7%
$\overline{G_{\mu}}$	high energy	$6.64\cdot 10^{-3}\mathrm{fb}$	-33%	-37%	-30%	-25%	-29%

Fiducial cuts						
$p_{\mathrm{T},l} > 20\mathrm{GeV}$	$p_{\mathrm{T},j} > 30\mathrm{GeV}$					
$ y_l < 2.5$	$ y_j < 4.5$					
$\Delta R_{ll'} > 0.1$	$\Delta R_{lj} > 0.4$					

Fixed-order EW NLO - Scheme variation

ZZ

Generators/Tools Sherpa + OpenLoops/Recola

$pp \rightarrow$	$e^+e^-\mu^+\mu^-$	fiducial cross section	corrections to LO				
Scheme	Region	LO	NLO EW	$\rm LO+EW_{virt}+YFS$	$LO+EW_{sud}+YFS$	$\rm LO{+}EW^{exp}_{sud}{+}YFS$	$ m NLO~EW+NLL~EW^{exp}_{sud}$
$\overline{G_{\mu}}$	inclusive	$9.8189(2)\mathrm{fb}$	-6.8%	-7.9%	-7.3%	-7.2%	-6.7%
$\alpha(M_Z^2)$		$10.928\mathrm{fb}$	-19.4%	-20.2%	-7.7%	-7.6%	-19.3%
$\delta^{\alpha(M_Z^2)}_{G_{\mu}}$		11.3 %	-3.8 %	-3.6%	10.8 %	10.8%	-3.7%
$\overline{G_{\mu}}$	high energy	$4.27\cdot 10^{-3}\mathrm{fb}$	-42%	-45%	-39%	-33%	-36%

ZZ+1jet

$pp \rightarrow$	$e^+e^-\mu^+\mu^-j$	fiducial cross section		corrections to LO				
Scheme	Region	LO	NLO EW	$\rm LO + EW_{virt} + YFS$	$\rm LO + EW_{sud} + YFS$	$\rm LO + EW_{sud}^{exp} + YFS$	NLO EW + NLL EW_{sud}^{exp}	
$\overline{G_{\mu}}$	inclusive	$5.1698(1)\mathrm{fb}$	-6.6%	-8%	-6.9%	-6.7%	-6.4%	
$\alpha(M_Z^2)$		$5.754\mathrm{fb}$	-19.2%	-21%	-6.9%	-6.7%	-19.0%	
$\delta^{\alpha(M_Z^2)}_{G_{\mu}}$		11.29%	-3.7%	-3%	11.3 %	11.3%	-3.7% .	
$\overline{G_{\mu}}$	high energy	$6.64\cdot 10^{-3}\mathrm{fb}$	-33%	-37%	-30%	-25%	-29%	

EWvirt captures very well the scheme dependence

EWsud has a LO-like scheme dependence \rightarrow worse agreement

Fiducial cuts							
$p_{\mathrm{T},l} > 20\mathrm{GeV}$	$p_{\mathrm{T},j} > 30\mathrm{GeV}$						
$ y_l < 2.5$	$ y_j < 4.5$						
$\Delta R_{ll'} > 0.1$	$\Delta R_{lj} > 0.4$						

Fixed-order EW NLO - Correction impact

Generators/Tools Sherpa + OpenLoops/Recola

$pp \rightarrow$	$e^+e^-\mu^+\mu^-$	fiducial cross section	corrections to LO				
Scheme	Region	LO	NLO EW	$\rm LO{+}EW_{virt}{+}YFS$	$LO+EW_{sud}+YFS$	$\rm LO{+}EW^{exp}_{sud}{+}YFS$	$\rm NLO~EW + \rm NLL~EW^{exp}_{sud}$
$\overline{G_{\mu}}$	inclusive	$9.8189(2){ m fb}$	-6.8%	-7.9%	-7.3%	-7.2%	-6.7 %
$\alpha(M_Z^2)$		$10.928\mathrm{fb}$	-19.4%	-20.2%	-7.7%	-7.6%	-19.3%
$\delta^{\alpha(M_Z^2)}_{G_{\mu}}$		11.3%	-3.8%	-3.6%	10.8%	10.8%	-3.7%
G_{μ}	high energy	$4.27\cdot 10^{-3}\mathrm{fb}$	-42%	-45%	-39%	-33%	-36%

ZZ

ZZ+1jet

$pp \rightarrow$	$e^+e^-\mu^+\mu^-j$	fiducial cross section	corrections to LO				
Scheme	Region	LO	NLO EW	$\mathrm{LO} + \mathrm{EW}_{\mathrm{virt}} + \mathrm{YFS}$	$\rm LO + EW_{sud} + YFS$	$\rm LO + EW^{exp}_{sud} + YFS$	NLO EW + NLL EW_{sud}^{exp}
$\overline{G_{\mu}}$	inclusive	$5.1698(1)\mathrm{fb}$	-6.6%	-8%	-6.9%	-6.7%	-6.4%
$\alpha(M_Z^2)$		$5.754\mathrm{fb}$	-19.2%	-21%	-6.9%	-6.7%	-19.0%
$\delta^{\alpha(M_Z^2)}_{G_{\mu}}$		11.29%	-3.7%	-3%	11.3%	11.3%	-3.7%
G_{μ}	high energy	$6.64\cdot 10^{-3}\mathrm{fb}$	-33%	-37%	-30%	-25%	-29%

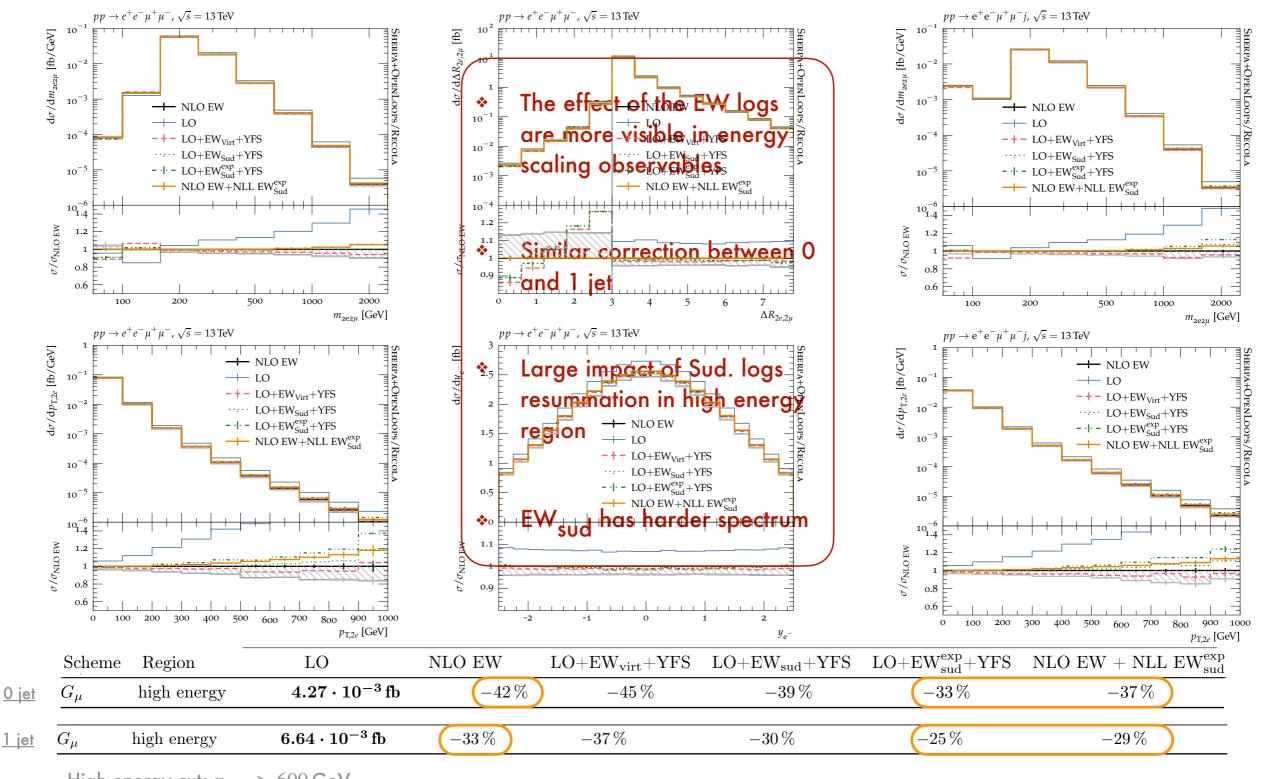
EWvirt captures very well the scheme dependence

EWsud has a LO-like scheme dependence \rightarrow worse agreement

- G_{μ} is a more adequate scheme for this study
- All the approximations reproduce quite well the NLO EW result

Magnitude EW corrections similar between 0 and 1 jet → extra jet doesn't affect charge distribution

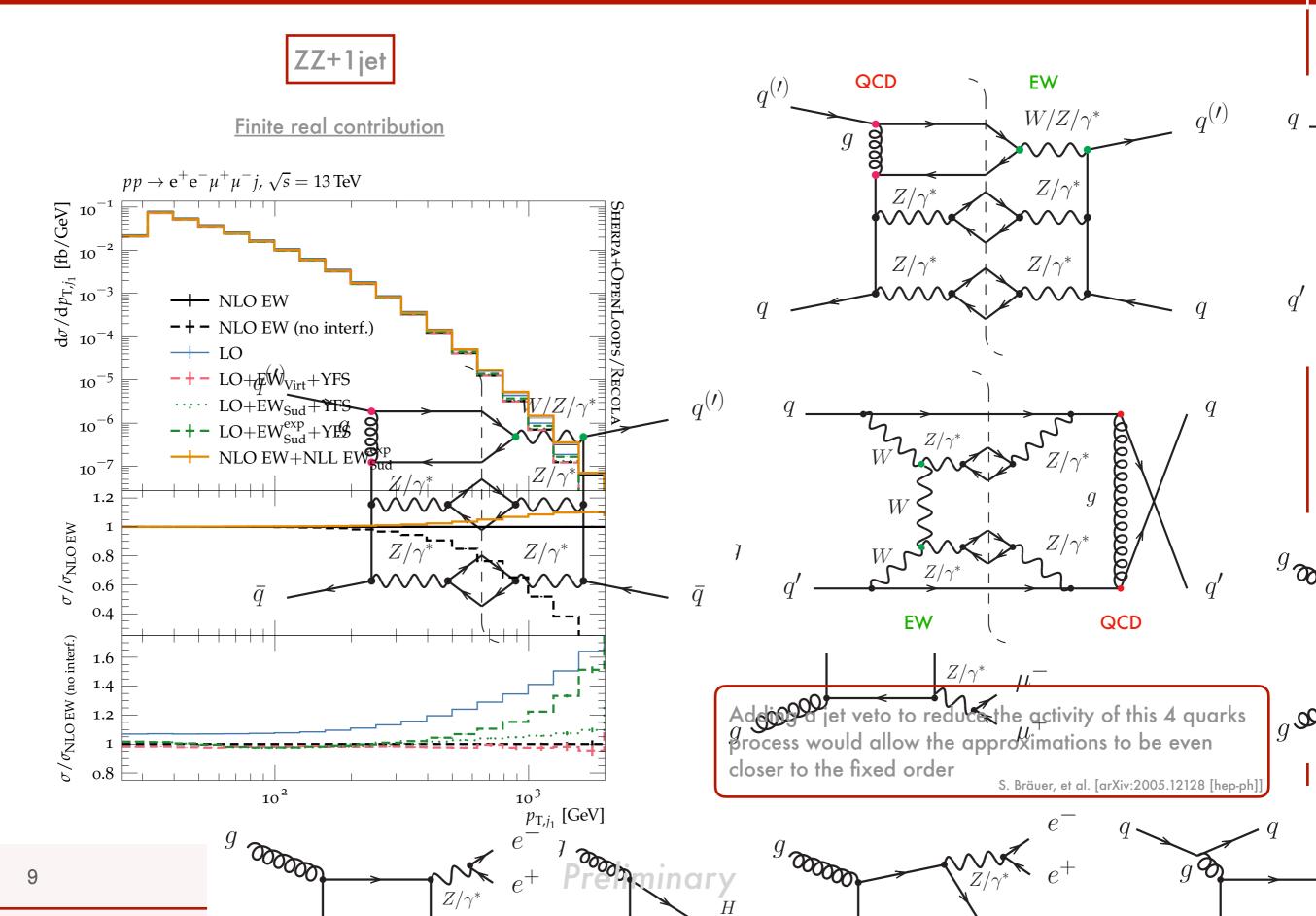
Fiducial cuts						
$p_{\mathrm{T},l} > 20\mathrm{GeV}$	$p_{\mathrm{T},j} > 30\mathrm{GeV}$					
$ y_l < 2.5$	$ y_j < 4.5$					
$\Delta R_{ll'} > 0.1$	$\Delta R_{lj} > 0.4$					



Preliminary

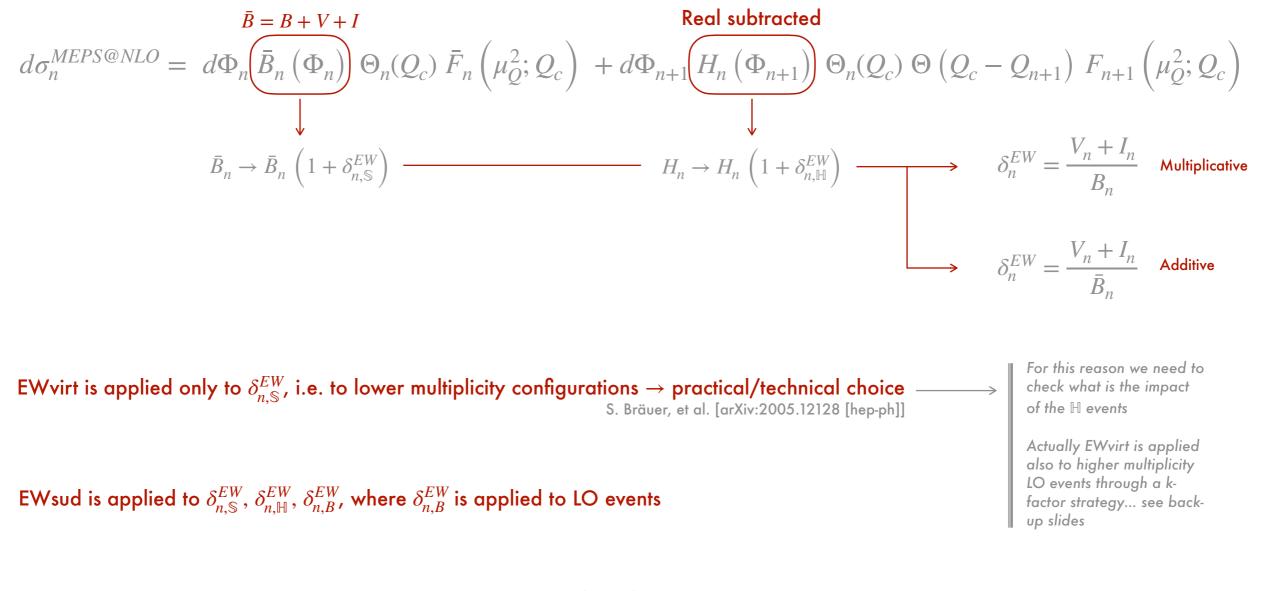
Fixed-order EW NLO - Differential XS

ZZ



Preliminary

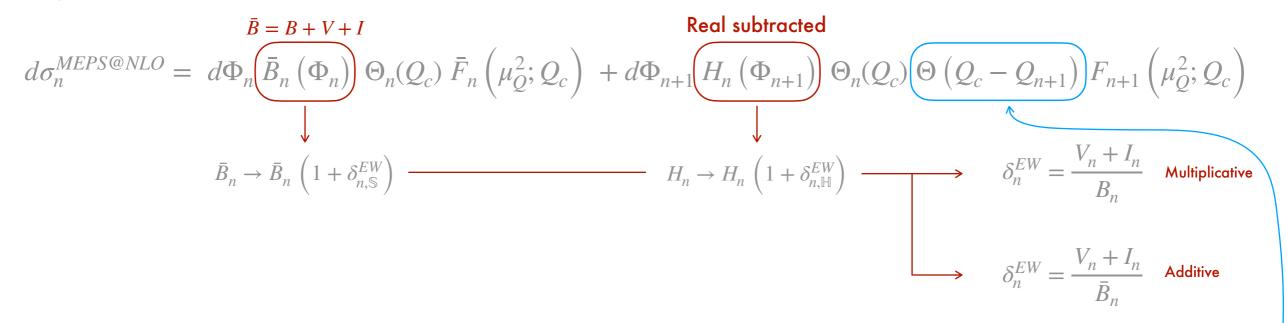
High energy cut: $p_{T,2e} > 600 \,\text{GeV}$


Fixed-order EW NLO - Differential XS

Multi-jet merged - Structural analysis

How are the EW approximations taken into account ?

Example case **MEPS@NLO**:


EWsud exponentiated applied similarly: $1 + \delta_n^{EW} \rightarrow \exp(\delta_n^{EW})$

Multi-jet merged - Structural analysis

How are the EW approximations taken into account ?

Example case **MEPS@NLO**:

S. Bräuer, et al. [arXiv:2005.12128 [hep-ph]]

Expected to be small due to p.s. constraints

For this reason we need to check what is the impact of the ℍ events

Actually EWvirt is applied also to higher multiplicity LO events through a kfactor strategy... see backup slides

EWsud is applied to $\delta_{n,\mathbb{N}}^{EW}$, $\delta_{n,\mathbb{H}}^{EW}$, $\delta_{n,\mathbb{H}}^{EW}$, where $\delta_{n,B}^{EW}$ is applied to LO events

EWvirt is applied only to $\delta_{n,\mathbb{S}}^{EW}$, i.e. to lower multiplicity configurations \rightarrow practical/technical choice

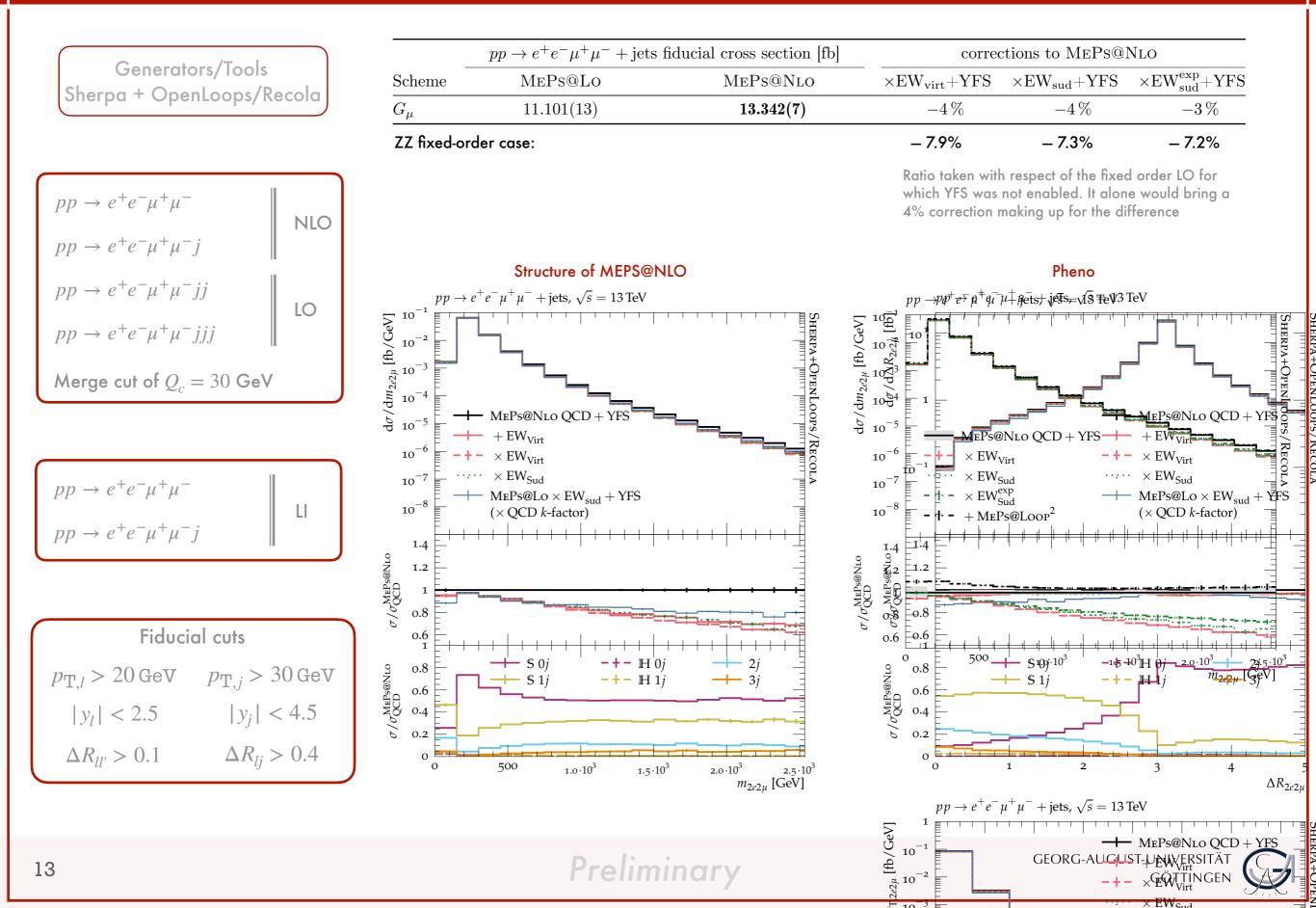
EWsud exponentiated applied similarly: $1 + \delta_n^{EW} \rightarrow \exp(\delta_n^{EW})$

Multi-jet merged

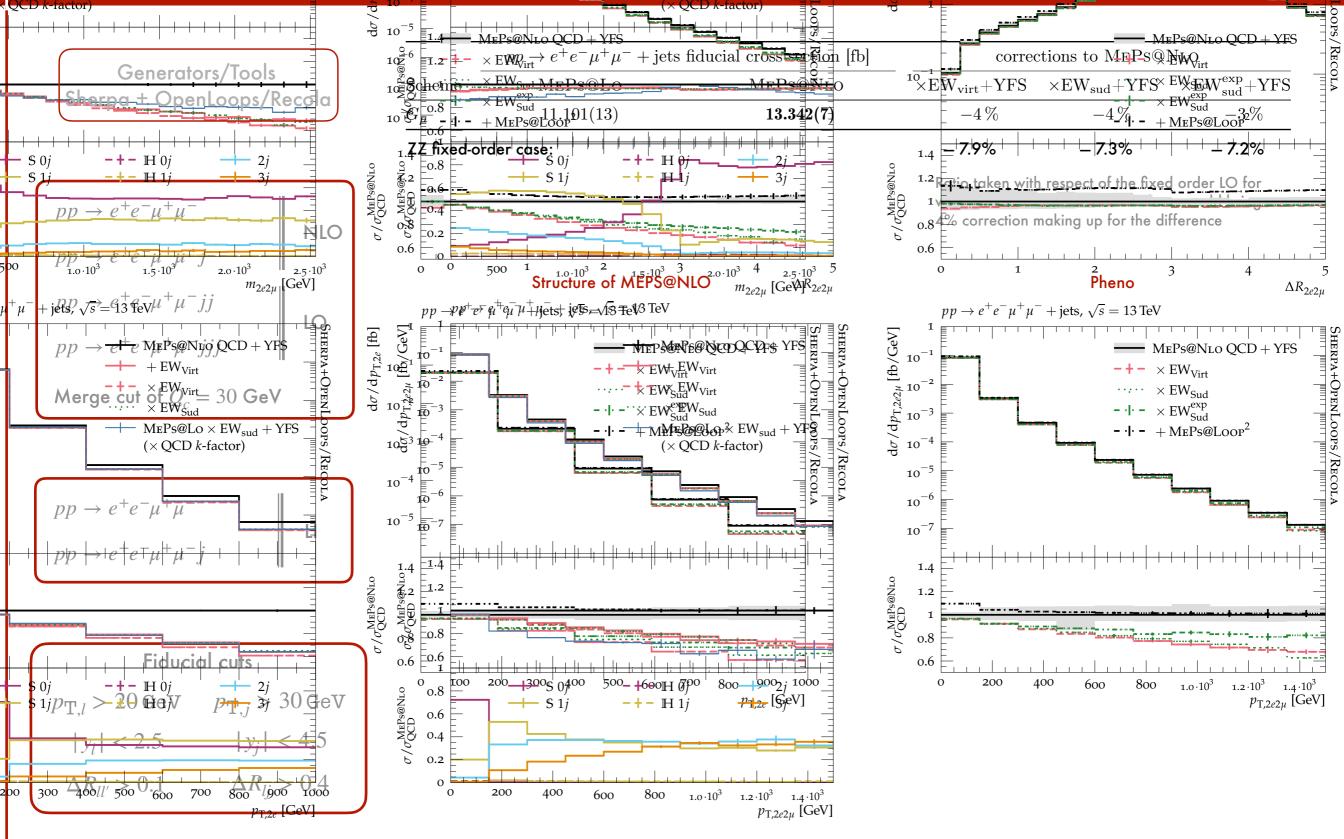
		$pp \rightarrow e^+e^-\mu^+\mu^- + jets$	fiducial cross section [fb]	corrections to MEPs@NLO		
Generators/Tools	Scheme	MEPs@Lo	MEPs@Nlo	$\times \rm EW_{virt} + \rm YFS$	$\times \rm EW_{sud}{+}\rm YFS$	$\times \rm EW^{exp}_{sud}{+}\rm YFS$
Sherpa + OpenLoops/Recola	G_{μ}	11.101(13)	13.342(7)	-4%	-4%	-3%
	ZZ fixed-o	order case:		- 7.9%	- 7.3%	- 7.2%

Ratio taken with respect of the fixed order LO for which YFS was not enabled. It alone would bring a 4% correction making up for the difference

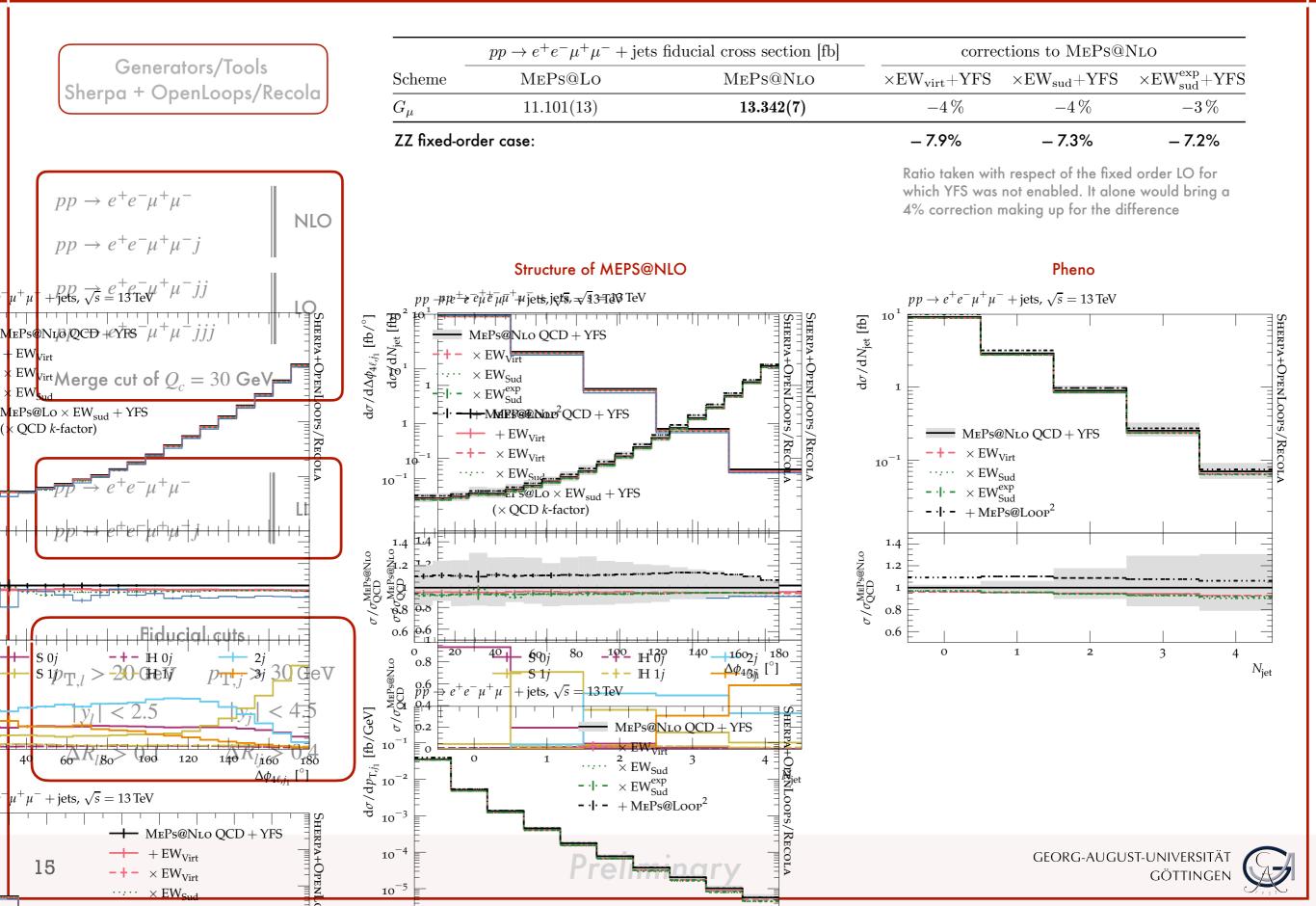
$pp \rightarrow e^+ e^- \mu^+ \mu^-$	
$pp \rightarrow e^+ e^- \mu^+ \mu^- j$	
$pp \rightarrow e^+ e^- \mu^+ \mu^- jj$	LO
$pp \rightarrow e^+ e^- \mu^+ \mu^- j j j$	
Merge cut of $Q_c = 30$ GeV	7


$$pp \to e^+ e^- \mu^+ \mu^-$$

$$pp \to e^+ e^- \mu^+ \mu^- j$$


Fiducial cuts						
$p_{\mathrm{T},l} > 20\mathrm{GeV}$	$p_{\mathrm{T},j} > 30\mathrm{GeV}$					
$ y_l < 2.5$	$ y_j < 4.5$					
$\Delta R_{ll'} > 0.1$	$\Delta R_{lj} > 0.4$					

Multi-jet merged - Invariant mass



Multi-jet merged - 4-lepton transverse momentum

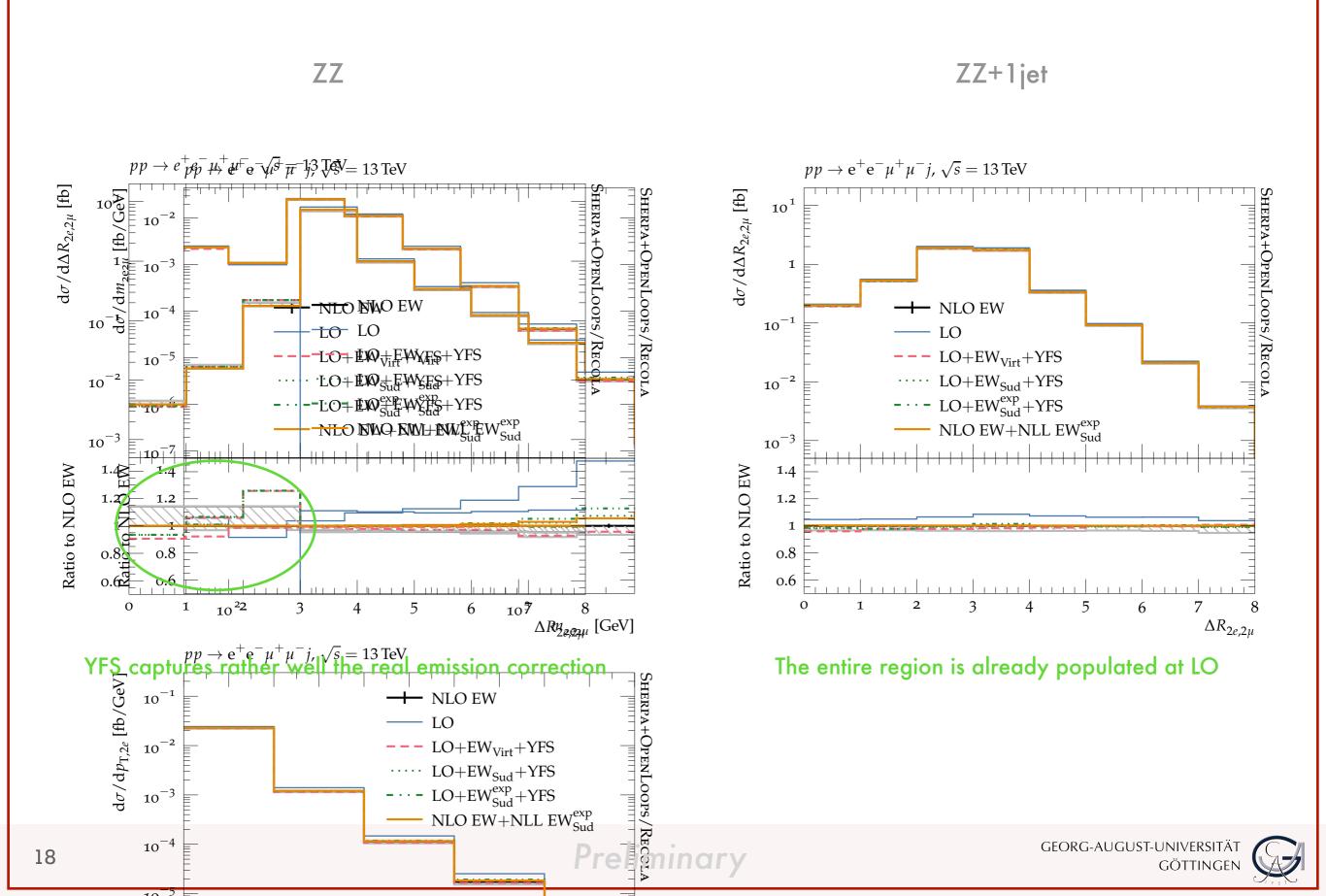
Preliminary

Multi-jet merged - Jet's number

Conclusions

Fixed order

- EW corrections for e⁺e⁻μ⁺μ⁻ production at high energy is dominated by Sudakov logs, well visible in differential and total XS
- * EWvirt and EWsud can replicate very well the NLO result
- ♦ We have studied for the first time the NLO EW for e⁺e⁻µ⁺µ⁻j showing that the addition of extra QCD radiation does not affect the EW charge distribution
- ♦ Possibility to match the resummed Sudakov logarithms to the fixed order calculation.
 Effect → harder spectrum


Phenomenological study

- Shown how to implement EW corrections in a general simulation (MEPS@NLO)
- * Structural analysis of the samples have shown that the way the EWvirt is applied is not spoiled by H-events
- * Also in this setup the EW corrections are very sizeable for observable with an energy scaling
- * Resummation of Sudakov logarithms
- * Loop induced corrections up to 1 jet do not affect the magnitude of the EW corrections
- ◆ EW corrections largely exceeds theoretical uncertainty → they need to be taken into account in a general simulation

Back up - Scale-less observable

MEPS k-factor

$$d\sigma_{n>n_{\max}^{\text{NLO}}}^{\text{excl,MEPs@NLO}} = d\Phi_n \underbrace{k_{n_{\max}^{\text{NLO}}}\left(\Phi_{n_{\max}^{\text{NLO}}}\left(\Phi_{n}\right), \Phi_{n_{\max}^{\text{NLO}}+1}\left(\Phi_{n}\right)\right)}_{k_{m}(\Phi_{m}, \Phi_{m+1})} = \underbrace{\overline{B}_{m}(\Phi_{m})}_{B_{m}(\Phi_{m})}\left(1 - \frac{H_{m}(\Phi_{m+1})}{B_{m+1}(\Phi_{m+1})}\right) + \frac{H_{m}(\Phi_{m+1})}{B_{m+1}(\Phi_{m+1})}$$

Improved resummation by EWvirt

$$k_{\text{matched},n}^{\text{EW}}\left(\Phi_{n},\Phi_{n+1}\right) = \frac{\overline{B}_{n}\left(\Phi_{n}\right)\left[\exp\left(\delta_{\text{sud},n}^{\text{EW}}\left(\Phi_{n}\right)\right) - \delta_{\text{sud},n}^{\text{EW}}\left(\Phi_{n}\right) + \delta_{\text{virt},n,\mathbb{S}}^{\text{EW}}\left(\Phi_{n}\right)\right]}{B_{n}\left(\Phi_{n}\right)\exp\left(\delta_{\text{sud},n}^{\text{EW}}\left(\Phi_{n}\right)\right)} \left(1 - \frac{H_{n}\left(\Phi_{n+1}\right)}{B_{n+1}\left(\Phi_{n+1}\right)}\right) + \frac{H_{n}\left(\Phi_{n+1}\right)}{B_{n+1}\left(\Phi_{n+1}\right)}\right)$$

Matching Sud. logs resummation to NLO EW

Fixed order

$$d\sigma^{\text{NLO EW} + \text{NLL Sud}} = d\Phi B(\Phi) \left[\exp\left(\delta_{\text{sud}}^{\text{EW}}(\Phi)\right) - \delta_{\text{sud}}^{\text{EW}}(\Phi) + \delta^{\text{EW}}(\Phi) \right]$$

Multi-jet merged

$$\overline{\mathbf{B}}_n \to \overline{\mathbf{B}}_n \left[\exp\left(\delta_{\mathrm{sud},n,\mathbb{S}}^{\mathrm{EW}}\right) - \delta_{\mathrm{sud},n,\mathbb{S}}^{\mathrm{EW}} + \delta_{\mathrm{virt},n,\mathbb{S}}^{\mathrm{EW}} \right] \quad \text{and} \quad \mathbf{H}_n \to \mathbf{H}_n \, \exp\left(\delta_{\mathrm{sud},n,\mathbb{H}}^{\mathrm{EW}}\right)$$

$$\mathrm{d}\Gamma^{\mathrm{YFS}} = \mathrm{d}\Gamma_0 \cdot e^{\alpha Y(\omega_{\mathrm{cut}})} \cdot \sum_{n_{\gamma}} \frac{1}{n_{\gamma}!} \left[\prod_{i=1}^{n_{\gamma}} \mathrm{d}\Phi_{k_i} \cdot \alpha \, \tilde{S}(k_i) \,\Theta(k_i^0 - \omega_{\mathrm{cut}}) \right] \cdot \mathcal{C}$$

