Measurement of 1-jettiness in deep-inelastic ep scattering at HERA

J. Hessler for the H1 Collaboration

14th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"

Technische Universität München, Max-Planck-Institut für Physik

23.11.2021

Neutral current deep-inelastic scattering

MAX-PLANCK-INSTITUT FÜR PHYSI

Neutral current deep-inelastic scattering

- Process $ep \rightarrow e'X$
- Electron or positron scattering

Kinematic variables

- Virtuality of exchanged boson Q^2 $Q^2 = -q^2 = -(k - k')^2$
- Inelasticity, Bjorken-x and centre-of-mass energy

$$y = \frac{P \cdot q}{P \cdot k}$$
 $Q^2 = x_{Bj} \cdot y \cdot s$

Breit frame

- Exchanged boson completely space-like
- Collides head-on with parton (brick-wall frame)

The 1-jettiness event shape observable

• Axes incoming parton and q + xP:

$$\tau_1^b = \frac{2}{Q^2} \sum_{i \in X} \min\{xP \cdot p_i, (q + xP) \cdot p_i\}$$

- Infrared safe and free of non-global logs
- Sensitive to strong coupling α_s and PDFs

DIS thrust normalised to boson axis

• Normalisation with Q/2 of the event:

$$au_{Q} = 1 - rac{2}{Q} \sum_{i \in \mathcal{H}_{\mathcal{C}}} P^{\textit{Breit}}_{z,i}$$

• Only particles in the current hemisphere contribute

Equivalence follows from momentum conservation:

$$\tau_Q = \tau_1^b$$

Sketch taken from Kang, Lee, Stewart [Phys.Rev.D 88 (2013) 054004]

Sensitivity of τ^b_1 to α_s

- Plot shows fixed order NLO calculation $ep \rightarrow e + 2jets$ for τ_1^b on PARTON LEVEL
- First bin is empty by definition
- Prediction scales linearly with strong coupling α_s

Pythia+Vincia α_s variations (± 5%)

- Plot shows Pythia 8.3 + Vincia prediction for τ_1^b on PARTICLE LEVEL
- High sensitivity in tail region
- No sensitivity in peak region (Born level kinematics)

.....

- Integrated luminosity $L = 351.6 \text{ pb}^{-1}$
- Electron and positron runs
- $E_e = 27.6$ GeV, $E_p = 920$ GeV $\rightarrow \sqrt{s} = 319$ GeV

- Asymmetric design with trackers, calorimeter, solenoid, muon-chambers, forward & backward detectors
- Trigger requires high-energetic cluster in LAr calorimenter
 - \rightarrow electron or hadron
 - $\rightarrow > 99\%$ efficient for $y \lessapprox 0.7$
- Particles are reconstructed using a particle flow algorithm

 \rightarrow Combining cluster and track information without double-counting of energy

DPHEP Collaboration and data-preservation

- MPP is among founding institutions in the initiative Data Preservation in High Energy Physics (DPHEP)
- Involved experiments are e.g. JADE, OPAL, H1 and ZEUS

Data preservation has many facets...

- Data (raw, already analysed (n-tuples), simulated (MC))
- Software (Simulation/ reconstruction/ analysis software, analysis workflows,...)
- Documentation (internal/external webpages, technical documentation, int-notes, analysis notes, wiki-pages, code-documentation, ...)
- Keep specific knowledge
 ⇒ Best practise: Continue analysing data!

DP at H1

- $\bullet\,$ Total volume at H1 ≈ 0.5 PB
- Preservation through modernisation (c.f. D. Britzger's talk in the computing session)

Emerging new interest in HERA data because of EIC (and LHeC)

MAX-PLANCK-INSTITUT FÜR PHYSIK

HERA-II data

- High- Q^2 region: $Q^2 > 150 \text{ GeV}^2$
- Luminosity: $L = 351 \text{ pb}^{-1}$

Signal Monte Carlo models

- Rapgap (ME + PS)
- Djangoh (CDM)

Little background in incl. DIS

- Photoproduction
- Low-Q² NC DIS
- Other sources are negligible (QEDC, CC DIS, di-lepton production)

Reconstruction

• Use the I Σ method \rightarrow Independent of electron ISR

 $Q^2 = Q_{\Sigma}^2 = rac{E_{e'}^2 \sin \vartheta_{e'}}{1-y_{\Sigma}}$

The 1-jettiness event shape observable

1-jettiness

$$\tau_1^b = \frac{2}{Q^2} \sum_{i \in X} \min\{x P \cdot p_i, (q + x P) \cdot p_i\}$$

Visualisation of the 1-jettiness with event displays

- DIS 1-jet configuration
- Most HFS particles collinear to scattered parton

$$\rightarrow$$
 Small τ_1^b

- Dijet event
- More and larger contributions to the sum over the HFS \rightarrow Large τ_1^b

MAX-PLANCK-INSTITUT FÜR PHYSIK

DIS thrust - a 4π observable

MAX-PLANCK-INSTITUT FÜR PHYSIK

- All particle candidates in all DIS events contribute $\left(\tau_Q = 1 \frac{2}{Q} \sum_{i \in H_r} P_{z,i}^{Breit}\right)$
- \bullet Normalised contribution to τ_Q for different ranges in polar angle ϑ and energy

- Mainly tracks and clusters in the central part of the detector contribute ($25^{\circ} < \vartheta < 153^{\circ}$)
- $\bullet\,$ Mainly particles with high energy contribute ($E>1\,\,{\rm GeV})$
 - \Rightarrow Well measured particles dominate in au_Q

1-jettiness - DIS thrust

DIS thrust: Sum of longitudinal momenta

- Longitudinal momentum distribution of single particles in the current hemisphere
- Particles are well modelled by simulation for clusters and tracks

DIS thrust

- $\tau_Q \rightarrow 0$: DIS 1-jet events
- $au_Q
 ightarrow 1$: Dijet events
- $\tau_Q = 1$: Dijet event, both jets in beam hemisphere

- Reasonable agreement between data and MC
- Full τ_Q range measurable

Purity distribution

MAX-PLANCK-INSTITUT FÜR PHYSIP

Purity defined as N_{stay}/N_{rec}

- *N_{rec}*: Events on detector level in one bin
- *N_{stay}*: Events that are reconstructed in the same bin they were generated

Purity

- Rapgap and Djangoh behave similarly
- Flat distribution in all *y*-*Q*² bins
- Purities > 30% in most bins

From different binnings and 2D migration matrices

- Purity mainly limited by bin-to-bin resolution effects
- Not an effect from limited detector acceptance

MAX-PLANCK-INSTITUT FÜR PHYSIK

Measure τ_Q but present cross sections as a function of τ_1^b

1-jettiness cross section

$$\left(\frac{d\sigma}{d\tau_1^b}\right)_i = \frac{N_{data,i} - N_{bkgd,i}}{\Delta_i \cdot L} \cdot c_{\text{QED},i} \cdot c_{\text{unfold},i}$$

- Unfolded using bin-by-bin method $c_{\rm unfold}$
- Corrected for QED radiative effects c_{QED}
- Divide by τ_1^b -bin width Δ_i
- Integrated luminosity $L = 351.6 \text{ pb}^{-1}$

Phase space

- Momentum transfer $150 < Q^2 < 20.000 \ {\rm GeV}^2$
- Inelasticity 0.2 < y < 0.7 (single differential)
- Inelasticity 0.1 < y < 0.9 (triple differential)

QED corrections

MAX-PLANCK-INSTITUT FÜR PHYSI

Correct for electron QED radiative effects

- Real emissions of photons (a,b)
- Vertex corrections (c)

- QED processes simulated with HERACLES
- Size of corrections depends on reconstruction method
- \rightarrow Corrections around 10%
- \rightarrow Large effect in the first bin

Single differential cross section

Comparison with MC models

- Djangoh 1.4: Colour-dipole-model
- Rapgap 3.1: ME + parton shower
- Pythia 8.3 + Dire

Dire Parton Shower

- Dipole-like shower
- Including inclusive NLO DGLAP corrections to the shower evolution

Peak region ($\tau_1^b \lesssim 0.2$)

- Resummation region
- Not well described by the models
- Tail region ($\tau_1^b \gtrsim 0.3$)
 - Fixed order region (O(α_s))
 - Djangoh and Rapgap perform well
 - Pythia+Dire underestimates the data

Single differential cross section

Comparison with parton shower models

- Peak region has strong dependence on different parton showers
- No PS model provides a fully satisfactory description
- 'Pythia default' underestimates au=1

$\gamma p \rightarrow \!\! 2 \text{ jets+X NNLO prediction form}$ NNLOJET

- NP corrections from Pythia 8.3 (sizeable)
- NNLO provides a reasonable description of fixed-order region
- NNLO improves over NLO

MAX-PLANCK-INSTITUT FÜR PHYSIK

Large cross section and sizeable data

 \rightarrow Triple-diff. cross sections as a function of Q^2, y, τ

3D cross sections

• increasing Q^2

 \rightarrow Peak moves to lower τ

 \rightarrow Tail region lowers

• Increasing y

ightarrow au = 1 becomes enhanced

MAX-PLANCK-INSTITUT FÜR PHYSI

17

MAX-PLANCK-INSTITUT FÜR PHYSIP

Comparison with further MC models

- Pythia+Vincia
- Pythia w/ default shower

Herwig 7.2

- Often similar to Pythia, but peak region too low (DIS cross section too low)
- Some structure at high au

MAX-PLANCK-INSTITUT FÜR PHYSIK

NNLO pQCD ($ep \rightarrow 2 \text{ jets}+X$)

- Reasonable description in entire phase space
- Improved description with increasing Q^2
- Small scale uncertainties

 \rightarrow Altogether: NNLO improves over NLO but NP corrections are sizeable

Summary and outlook

MAX-PLANCK-INSTITUT FÜR PHYSIK

- A first measurement of the 1-jettiness event shape observable in NC DIS was presented (Analysis team J. Hessler, D. Britzger, S. Lee [J. Kretzschmar, E. Elsen])
- 1-jettiness is equivalent to DIS thrust normalised with Q/2 → Defined for every NC DIS event
- Classical Monte Carlo provides a good description of the data
- Modern Monte Carlo provides a reasonable description
- NNLO fixed order predictions (*ep* →2 jets) provide good description in the region of validity, but hadronisation corrections are large

Kang, Lee, Stewart, [PoS DIS2015 (2015) 142]

Summary and outlook

Outlook

- Apply advanced unfolding methods
- Predictions need to be confronted with data
 - N3LL ([PoS DIS2015 (2015) 142])
 - N3LO (Phys.Lett.B 792 (2019) 182, [1812.06104]
 - NNLO + Power Corrections (Eur.Phys.J.C 79 (2019) 1022 [1909.02760])
 - NNLO+PS (Phys. Rev. D 98, 114013 (2018) [1809.04192]) (UN²LOPS)
 - N3LO+PS (first concepts for N3LO+PS available [arXiv:2106.03206])
- ${\scriptstyle \bullet}$ Sensitivity to α_{s} and PDFs needs to be explored
- Data will become useful for improving (DIS) MC generators

 \Rightarrow Improved parton showers & smaller PDF uncertainties

- Z. Kang, X.Liu, S. Mantry, The 1-Jettiness DIS event shape: NNLL + NLO results, arXiv:1312.0301v2, 2014
- [2] D. Kang, C. Lee, I. Stewart, Using 1-Jettiness to Measure 2 Jets in DIS 3 Ways, arXiv:1303.6952v2, 2013.
- [3] D. Kang, DIS Event Shape at N³LL, https://indico.cern.ch/event/341292/contributions/1739091/attachments/670208/ 921244/DIS2015-kang.pdf, 2015
- [4] R. Kogler, Measurement of Jet Production in Deep-Inelastic *ep* Scattering at HERA, DESY-THESIS-2011-003, 2010
- [5] U. Bassler, G. Bernardi, On the Kinematic Reconstruction of Deep Inelastic Scattering at HERA: the Σ Method, arXiv:hep-ex/9412004v1, 1994
- [6] D. Kang, C. Lee, I. Stewart, Analytic Calculation of 1-Jettiness in DIS at $O(\alpha_s)$, arXiv:1407.6706v1, 2014.