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Introduction.



Double Parton scattering.

What is double parton scattering?
Double parton scattering (DPS) describes two individual hard interactions in a single hadron-hadron
collision:

DPS is naturally associated with the situation where the final state can be separated into two subsets
with individual hard scales.
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Importance of DPS.

Why is DPS interesting?
I Whilst generally suppressed compared to SPS, DPS may be enhanced for final states with small

transverse momenta or large separation in rapidity.

I When production of final states via SPS involves small coupling constants or higher orders, DPS
may give leading contributions (like-sign W production):

W+
u

d

u
W+

d

W+

W+

u

d̄

u

d̄

−→ background to the search for new physics with like-sign lepton pairs.

I Relative importance of DPS increases with collision energy (σDPS ∼ PDF4 vs. σSPS ∼ PDF2).

I DPS gives access information about hadron structure not accessible in other processes: spatial,
spin, and colour correlations between two partons.
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Describing DPS.

Factorization for DPS.
Pioneering work already in the 80’s:

LO factorisation formula based on a parton model picture [Politzer, 1980; Paver and Treleani, 1982; Mekhfi, 1985]

σpp→A,B = σ̂ik→A(x1 x̄1s) σ̂jl→B(x2 x̄2s)

×
∫

d2y Fij(x1, x2, y; Q2
1, Q2

2) Fkl(x̄1, x̄2, y; Q2
1, Q2

2)

Increasing interest in DPS in the LHC era:

I First experimental data already from previous colliders at CERN and Tevatron, new measurements
from LHC with more to come.

I Progress also from theory:
I Systematic QCD description. [Blok et al., 2011; Diehl et al., 2011; Manohar and Waalewijn, 2012; Ryskin and Snigirev, 2012]
I Factorization proof for double DY. [Diehl, Gaunt, Plößl, and Schäfer, 2015; Diehl and Nagar, 2019]
I Disentangling SPS and DPS. [Gaunt and Stirling, 2011; Diehl, Gaunt, and Schönwald, 2017]
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Theory: DPD basics.



Definition of DPDs.

Bare position space DPDs:

Fr1r′1 r2r′2
Bus,a1a2

(x1, x2, y) = (x1 p+)−n1 (x2 p+)−n2 2p+
∫

dy−
dz−1
2π

dz−2
2π

ei(x1z−1 +x2z−2 ) p+

× 〈 p | Or1r′1
a1 (y, z1)O

r2r′2
a2 (0, z2) | p〉

∣∣
y+=0 ,

Oii′
q (y, z) = q̄j′(ξ−)

[
W†(ξ−, vL)

]
j′i′

γ+

2
[

W(ξ+, vL)
]

ij qj(ξ+) ,

Oaa′
g (y, z) =

[
G+k(ξ−)

]b′ [W†(ξ−, vL)
]b′a′ [W(ξ+, vL)

]ab [G+k(ξ+)
]b ,

with ξ± = y± z/2, z+ = 0, z = 0.

Bare momentum space DPDs:

Fr1r′1 r2r′2
Bus,a1a2

(x1, x2, ∆) =
∫

d2−2εy eiy∆ Fr1r′1 r2r′2
Bus,a1a2

(x1, x2, y) .
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Colour structure of DPDs.

Decomposing the colour structure of DPDs.

The colour indices in the definition of the DPDs can be coupled to an overall colour singlet in a variety
of ways. [Mekhfi, 1985] In order to make this more systematic we:

I Couple the fields pairwise (ri and r′i) to irreducible representations Ri of SU(N) such that R1R2 is
a colour singlet.

I Decompose the full colour structure in terms of these combinations:

Fr1r′1 r2r′2
Bus,a1a2

(x1, x2, y) ∼ ∑
R1,R2

Pr1r′1 r2r′2
R1R2

R1R2FBus,a1a2(x1, x2, y)

In addition to R1R2 = 1 1 one finds the following colour non-singlet channels:

I R1R2 = 8 8 for a1a2 = qq′.
I R1R2 = 8 A and 8 S for a1a2 = qg.
I R1R2 = A A, S S, A S, S A, 10 10, 10 10 and 27 27 for a1a2 = gg.
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Colour structure of DPDs.

Rapidity divergences in colour non-singlet DPDs.

DPDs in colour non-singlet channels exhibit rapidity divergences, which cancel only when combined
with the DPS soft factor [Buffing, Diehl, and Kasemets, 2017]:

R1R2 FB(x1, x2, y, ζp) = lim
ρ→∞

R1R2 FBus(x1, x2, y, ρ)√
R1SB(y, 2`L(ρ, ζp))

,

where the limit ρ→ ∞ corresponds to removing the rapidity regulator.

−→ DPDs pick up a rapidity dependence, which is governed by a Collins-Soper type equation:

∂

∂ log ζp
log R1R2 F(x1, x2, y; µ, ζp) =

R1J(y, µ)
/

2 , with ∂

∂ log µ2
RJ(y; µ) = −RγJ(µ) .
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Renormalization of DPDs.

Renormalization of UV divergences.

Renormalized position space DPDs:

R1R2 F(x1, x2, y, µ, ζp) = ∑
R ′1R ′2

R1R ′1 Z(µ, x2
1 ζp)⊗

1

R2R ′2 Z(µ, x2
2 ζp)⊗

2

R ′1R ′2 FB(y, µ, ζp) .

with individual renormalization factors Z for each of the twist-2 operators in the definition of bare DPDs.

Double DGLAP equation for position space DPDs:

∂

∂ log µ2
R1R2 Fa1a2(x1, x2, y, µ, ζp) = ∑

b1,R ′1

R1R ′1 Pa1b1(µ, x2
1 ζp)⊗

1

R ′1R2 Fb1a2(y, µ, ζp)

+ ∑
b2,R ′2

R2R ′2 Pa2b2(µ, x2
2 ζp)⊗

2

R1R ′2 Fa1b2(y, µ, ζp) ,

14th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale" 11/24/2021 7/22



Small distance limit of DPDs.

Perturbative splitting in DPDs.
In the limit of small distance y (and correspondingly large ∆) the leading contribution to a DPD is due
to the perturbative splitting of one parton into two:

R1R2 F(x1, x2, ∆; µ, ζp) =
R1R2W(∆; µ, x1x2ζp)⊗

12
f (µ) ,

R1R2 F(x1, x2, y; µ, ζp) =
Γ(1− ε)

(πy2)1−ε
R1R2 V(y; µ, x1x2ζp)⊗

12
f (µ) ,

where [
V ⊗

12
f
]
(x1, x2) =

1∫
x

dz
z2 V

(
x1

z
,

x2

z

)
f (z) =

1
x

1∫
x

dz V(uz, ūz) f
(

x
z

)
with

x = x1 + x2 , u =
x1

x1 + x2
, ū = 1− u .
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x1
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z
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1
x
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x
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(

x
z

)
with

x = x1 + x2 , u =
x1
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for y→ 0



Calculation: Goals.



Goals of our calculation.

What we calculate and how we do this.

One of the last missing piece for colour non-singlet NLO DPS calculations in the framework of
[Diehl, Gaunt, and Schönwald, 2017] are the NLO coefficients of the V splitting kernels.

−→ Already calculated these for the colour singlet case. [Diehl, Gaunt, Plößl, and Schäfer, 2019]

−→ Extend this now to the colour non-singlet sector. This will also allow us to study colour
correlations in DPS.

For the actual calculation we first calculate R1R2W(2)
Bus(∆, ρ) and then extract the renormalized R1R2 V(2)

by performing a RGE analysis.

We perform the calculation for two different rapidity regulators:

I Collins regulator using space-like Wilson lines. [Collins, 2011]

I δ regulator. [Echevarria, Scimemi, and Vladimirov, 2016]

−→ First application (to our knowledge) of the Collins regulator to a two loop calculation!
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Bus(∆, ρ) and then extract the renormalized R1R2 V(2)

by performing a RGE analysis.

We perform the calculation for two different rapidity regulators:

I Collins regulator using space-like Wilson lines. [Collins, 2011]

I δ regulator. [Echevarria, Scimemi, and Vladimirov, 2016]

−→ Obtain identical results in both schemes!
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Calculation: W(2)
Bus.



Calculating W(2)
Bus.

From Feynman diagrams to W(2)
Bus.

The NLO a0 → a1a2 kernel W(2)
Bus,a1a2,a0

can be obtained by calculating the DPD for partons a1, a2 in
parton a0:

F(2)
Bus,a1a2/a0

(∆, ρ) = ∑
b

[
W(2)

Bus,a1a2,b(∆, ρ)⊗
12

f (0)B,b/a0
+ W(1)

Bus,a1a2,b(∆, ρ)⊗
12

f (1)B,b/a0

]
= W(2)

Bus,a1a2,a0
(∆, ρ)

At O(α2
s ) we find the following splitting kernels:

I LO channels: g→ gg, g→ qq̄, and q→ qg

I NLO channels: g→ qg, q→ gg, qj → qjqk, qj → qj q̄k, qj → qk q̄k

Note: Only LO channels exhibit rapidity divergences.
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Calculating W(2)
Bus.
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Diagrams in orange give rise to
rapidity divergences!



Calculating W(2)
Bus.

Diagrams in orange give rise to rapidity divergences!
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Calculating W(2)
Bus.

Evaluating real diagrams.

Ga1a2/a0

I k3 = k− k1 − k2,

I k+1 = z1k+, k+2 = z2k+, ∆+ = 0

I k+3 = z3k+ = (1− z1 − z2)k+

F(2)
Bus and thus W(2)

Bus is obtained from these diagrams by integrating over k−1 , k−2 , ∆−, k1, and k2:

F(2),real
Bus,a1a2/a0

(z1, z2, ∆) = ∑
G

[
2

∏
i=1

(xi p+)−ni

∫ dk−i dD−2ki

(2π)D

]
2p+

∫ d∆−

2π
Ga1a2/a0(k1, k2, ∆)
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Calculating W(2)
Bus.

Performing momentum integrations.

First perform the integrations over minus components:

I The on-shell condition for parton a3 can be used to perform one of the minus integrations, yielding:

k−3 =
k2

3
2z3k+

I For the remaining minus integrations we use Cauchy’s theorem.

After this perform the transverse momentum integrations:

I Use IBP relations to reduce the Feynman integrals to a finite set of master integrals.

I Use the method of differential equations to compute the master integrals:
I Transform to Henn’s canonical basis.
I Use method of regions to obtain boundary conditions for the differential equations.
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Dealing with rapdidity divergences.

How do we implement the rapidity regulators?

Wilson line propagator in the Collins regulator scheme:

lim
ε→0

1
v−L k+3 + v+L k−3 + iε

+ c.c. =
2

v−L k+
PV

z3

z2
3 − k2

3 z1z2
/

ρ
with ρ = 2k+1 k+2 v−L

/
|v+L | ,

for space-like Wilson lines along direction vL with v−L > 0 and v+L < 0.

Wilson line propagator in the δ regulator scheme:

1
k+3 + iδ+

+ c.c. =
2

k+
z3

z2
3 + z1z2/ρ

with ρ = k+1 k+2 /(δ+)2 .

−→ Keep only real parts of WL propagators (sum over complex conjugate diagrams)!

−→ Taking ρ→ ∞ removes the rapidity regulator and restores the light-like Wilson lines.
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Dealing with rapdidity divergences.

How do we implement the rapidity regulators?

Using the following distributional expansions makes the rapidity divergences explicit as logarithms of the
parameter ρ:

Collins regulator:

lim
ρ→∞

PV
z3

z2
3 − k2

3 z1z2
/

ρ
=

1
[z3]+

+
1
2

δ(z3)

[
log

ρ

∆2 − log(z1z2)− log
k2

3

∆2

]
,

δ regulator:

lim
ρ→∞

z3

z2
3 + z1z2/ρ

=
1

[z3]+
+

1
2

δ(z3)
[
log ρ− log(z1z2)

]
.

Note: For the Collins regulator it is crucial to use this identity before performing the IBP reduction!
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Results: analytical results.



Analytic results.

General structure of results.

Colour non-singlet kernels:

R1R2 V(2)
a1a2,a0(z, u, y, µ, ζ) = R1R2 V[2,0]

a1a2,a0(z, u) + L R1R2 V[2,1]
a1a2,a0(z, u)

+

(
L log

µ2

ζ
− L2

2
+ cMS

) R1 γ
(0)
J

2
R1R2 V(1)

a1a2,a0(z, u)

where L = log y2µ2

b2
0

and b0 = 2e−γ and

V[2,0](z, u) = V[2,0]
regular(z, u) + δ(1− z)V[2,0]

δ (u) ,

V[2,1](z, u) = V[2,1]
regular(z, u) +

1
[1− z]+

V[2,1]
+ (u) + δ(1− z)V[2,1]

δ (u)
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Results: numerical investigations.



Numerics.

Impact of NLO corrections on small y DPDs.

We study how including the NLO corrections effects the small y gg DPD for the following set of
parameters:

I y = 0.022 fm

I µ = b0
y = 10 GeV

I x1x2ζp = µ2 = 100 GeV2

For this choice of parameters only the V[2,0] part of the kernels contributes to the final DPD.

In order to get a feeling for the relative importance of the logarithmic V[2,1] and double logarithmic
V(1) parts we vary µ and

√
x1x2ζp by a factor of two around their central values.
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Numerics.

|x1x2
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Numerics.

RRF(2)
gg /RRF(1)

gg .
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I moderate (O(10%)) NLO corrections.
I varied structure as a function of x1 and x2.
I results rather independent of PDF sets

used.
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Numerics.
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I large (O(100%)) NLO corrections for
µ 6= µy.

I splitting form should be evaluated at
µ ∼ µy to avoid large higher order
corrections.
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Conclusion and outlook.



Conclusion and outlook.

What’s been done so far?

I Calculated the unpolarised NLO small y splitting kernels R1R2 V(2)
a1a2,a0 for all parton and colour

channels.

I Used different rapidity regulator schemes, providing a strong cross check.

I First application of the Collins regulator in a two loop calculation.

I Studied numerically the impact of the NLO corrections to small y DPDs.

What’s left to do?

I Calculate the polarised NLO small y splitting kernels.

I Calculate the NLO colour non-singlet evolution kernels (work in progress [Diehl, Fabry, and Vladimirov]).

I Calculate NLO colour non-singlet hard scattering cross sections.
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Backup.



From W(2)
Bus to V(2).

Performing the rapidity subtraction.

A Fourier transform gives the bare unsubtracted NLO position space kernel as:

Γ(1− ε)

(πy2)1−ε
R1R2 V(2)

Bus(y, ρ) =
∫ d2−2ε∆

(2π)2−2ε
e−i∆y R1R2W(2)

Bus(∆, ρ) .

With this and the definition of the rapidity subtracted DPDs one then gets:

R1R2 V(2)
B = lim

ρ→∞

{
R1R2 V(2)

Bus(ρ)−
1
2

R1S(1)
B (2`L(ρ, ζ)) R1R2 V(1)

B

}
,

where the involved quantities on the right-hand side generally differ in the two regulator schemes, while
the left-hand side is already independent of this choice!
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From V(2)
B to V(2).

Performing the UV renormalization.

From the renormalization prescription for the DPDs one easily obtains that the renormalized position
space splitting kernel is given by:

R1R2 V(y, µ, ζ) = R1R ′1 Z(µ, ζ)⊗
1

R2R ′2Z(µ, ζ)⊗
2

R ′1R ′2 VB(y, µ, ζ)⊗
12

(11Z
)−1

(µ)

The NLO position space splitting kernel R1R2 V(2) is then obtained by this relation in αs to O(α2
s ) as:

V(2) = V(2)
fin −

(
P̂(0) ⊗

1

[
V(1)

B
]

1 + P̂(0) ⊗
2

[
V(1)

B
]

1 −
[
V(1)

B
]

1 ⊗12
P(0) +

β0

2
[
V(1)

B
]

1

)

+

(
L log

µ2

ζ
− L2

2
+ cMS

)
γ
(0)
J

2
V(1) + L

(
P̂(0) ⊗

1
V(1) + P̂(0) ⊗

2
V(1) −V(1) ⊗

12
P(0) +

β0

2
V(1)

)

with L = log µ2y2

b2
0

and b0 = 2e−γ.
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More on rapidity.

Rescaling of the rapidity parameter.

The rapidity parameters ζp and ζ p̄ in this work are normalised as:

ζpζ p̄ = (2p+ p̄−)2 = s2 ,

which differs from the convention in the TMD case

ζζ̄ = x2 x̄2(2p+ p̄−)2 = Q4 ,

where the rapidity parameters are normalized w.r.t. the extracted parton, which would be awkward in
the DPD case where parton momenta often appear in convolution integrals.

−→ need to rescale the rapidity parameter in renormalisation factors and evolution kernels!

−→ reason: can only depend on the plus-momentum xi p+ of the parton to which they refer!
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Calculating W(2)
Bus.

From light-cone gauge diagrams to Wilson line diagrams in Feynman gauge.
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Kinematic limits.

Kinematic limits of the small y DPDs: Large x = x1 + x2.

R1R2 V(2) ⊗
12

f =
x→1

L R1R2 V[2,1]
+ (u) log(1− x) f (x)

+

[
R1R2 V[2,0]

δ (u) + L R1R2 V[2,1]
δ (u) +

(
L log

µ2

x1x2 ζp
− L2

2
+ cMS

) R1 γ
(0)
J

2
R1R2 V(1)(u)

]
f (x)

−→ logarithmic enhancement for plus distribution terms in the large x limit.

As a consequence one finds dominant contributions from the following kernels:

I R1R2 V(2)
gg,g for R1R2 6= AA, SS.

I R1R2 V(2)
qq̄,g for all R1R2.

I R1R2 V(2)
qg,q for R1R2 = 11.
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Kinematic limits.

Kinematic limits of the small y DPDs: Small x = x1 + x2.
For V(uz, ūz) = w(u)/z2 one finds[

V ⊗
12

f
]
(x) =

w(u)
x

[
1
z
⊗ f

]
(x) = w(u) E(x)

f (x)
x

with an enhancement factor

E(x) =

{
k−1 log(1/x) for x f (x) = c logk−1(1/x) ,

(1− xα)/α for x f (x) = cx−α ,

−→ small x enhancement for z−2 terms in the kernels (in analogy to z−1 terms in DGLAP kernels).

As a consequence one finds leading small x contributions from the following kernels:

I R1R2 V(2)
gg,g for all R1R2.

I R1R2 V(2)
qq̄,g for all R1R2.

I R1R2 V(2)
gg,q for R1R2 6= AS, SA ((q− q̄)(z) is not steep enough for small z).
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Kinematic limits.

Kinematic limits of the small y DPDs: Small x1 or x2.

Corresponds to the small u = x1
x1+x2

and small ū = x2
x1+x2

limit, with leading contributions going as u−1

and ū−1 associated with slow gluons.

I u−1 & ū−1: R1R2 V(2)
gg,g, R1R2 V(2)

gg,q, and R1R2 V(2)
qg,g for all R1R2,

I ū−1: R1R2 V(2)
qg,q, and R1R2 V(2)

qq′ ,q for all R1R2.

Find two sources for this behaviour in small y DPDs:

I Explicit u−1 and ū−1 terms in the kernels.

I Terms in the kernels producing u−1 and ū−1 behaviour in the convolution with a PDF:
(1− zū)−1 ∼ (k+ − k+2 )

−1 (u−1), (1− zu)−1 ∼ (k+ − k+1 )
−1 (ū−1) and similar terms.
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(1− zū)−1 ∼ (k+ − k+2 )

−1 (u−1), (1− zu)−1 ∼ (k+ − k+1 )
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