Two-loop splitting in double parton distributions.

the colour non-singlet case

[arXiv:2105.08425]

November 24, 2021

M. Diehl ¹ J. R. Gaunt ² P. Plößl ¹

¹Deutsches Elektronen-Synchrotron DESY ²Department of Physics and Astronomy, University of Manchester

Introduction.

Double Parton scattering.

What is double parton scattering?

Double parton scattering (DPS) describes two individual hard interactions in a single hadron-hadron collision:

DPS is naturally associated with the situation where the final state can be separated into two subsets with individual hard scales.

Importance of DPS.

Why is DPS interesting?

- Whilst generally suppressed compared to SPS, DPS may be enhanced for final states with small transverse momenta or large separation in rapidity.
- When production of final states via SPS involves small coupling constants or higher orders, DPS may give leading contributions (like-sign W production):

 \longrightarrow background to the search for new physics with like-sign lepton pairs.

- ▶ Relative importance of DPS increases with collision energy ($\sigma_{\text{DPS}} \sim \text{PDF}^4$ vs. $\sigma_{\text{SPS}} \sim \text{PDF}^2$).
- DPS gives access information about hadron structure not accessible in other processes: spatial, spin, and colour correlations between two partons.

Describing DPS.

Factorization for DPS.

Pioneering work already in the 80's:

LO factorisation formula based on a parton model picture [Politzer, 1980; Paver and Treleani, 1982; Mekhfi, 1985]

$$\sigma_{pp \to A,B} = \hat{\sigma}_{ik \to A}(x_1 \bar{x}_1 s) \,\hat{\sigma}_{jl \to B}(x_2 \bar{x}_2 s) \\ \times \int d^2 \boldsymbol{y} \, F_{ij}(x_1, x_2, \boldsymbol{y}; Q_1^2, Q_2^2) \, F_{kl}(\bar{x}_1, \bar{x}_2, \boldsymbol{y}; Q_1^2, Q_2^2)$$

Increasing interest in DPS in the LHC era:

- First experimental data already from previous colliders at CERN and Tevatron, new measurements from LHC with more to come.
- Progress also from theory:
 - Systematic QCD description. [Blok et al., 2011; Diehl et al., 2011; Manohar and Waalewijn, 2012; Ryskin and Snigirev, 2012]
 - ► Factorization proof for double DY. [Diehl, Gaunt, Plößl, and Schäfer, 2015; Diehl and Nagar, 2019]
 - ► Disentangling SPS and DPS. [Gaunt and Stirling, 2011; Diehl, Gaunt, and Schönwald, 2017]

Describing DPS.

Factorization for DPS.

Pioneering work already in the 80's:

LO factorisation formula based on a parton model picture [Politzer, 1980; Paver and Treleani, 1982; Mekhfi, 1985]

$$\sigma_{pp \to A,B} = \hat{\sigma}_{ik \to A}(x_1 \bar{x}_1 s) \,\hat{\sigma}_{jl \to B}(x_2 \bar{x}_2 s)$$

$$\times \int d^2 \boldsymbol{y} \, F_{ij}(x_1, x_2, \boldsymbol{y}; Q_1^2, Q_2^2) \, F_{kl}(\bar{x}_1, \bar{x}_2, \boldsymbol{y}; Q_1^2, Q_2^2)$$

Increasing interest in DPS in the LHC era:

- First experimental data already from previous colliders at CERN and Tevatron, new measurements from LHC with more to come.
- Progress also from theory:
 - Systematic QCD description. [Blok et al., 2011; Diehl et al., 2011; Manohar and Waalewijn, 2012; Ryskin and Snigirev, 2012]
 - ► Factorization proof for double DY. [Diehl, Gaunt, Plößl, and Schäfer, 2015; Diehl and Nagar, 2019]
 - ► Disentangling SPS and DPS. [Gaunt and Stirling, 2011; Diehl, Gaunt, and Schönwald, 2017]

Theory: DPD basics.

Definition of DPDs.

Bare position space DPDs:

$$F_{Bus,a_{1}a_{2}}^{r_{1}r_{1}'r_{2}r_{2}'}(x_{1},x_{2},y) = (x_{1}p^{+})^{-n_{1}}(x_{2}p^{+})^{-n_{2}} 2p^{+} \int dy^{-} \frac{dz_{1}^{-}}{2\pi} \frac{dz_{2}^{-}}{2\pi} e^{i(x_{1}z_{1}^{-}+x_{2}z_{2}^{-})p^{+}} \\ \times \langle p | \mathcal{O}_{a_{1}}^{r_{1}r_{1}'}(y,z_{1}) \mathcal{O}_{a_{2}}^{r_{2}r_{2}'}(0,z_{2}) | p \rangle |_{y^{+}=0},$$

with $\xi_{\pm}=y\pm z/2$, $z^+=0$, z=0.

Bare momentum space DPDs:

$$F_{B\mathrm{us},a_{1}a_{2}}^{r_{1}r_{1}'r_{2}r_{2}'}(x_{1},x_{2},\Delta) = \int d^{2-2\epsilon} y \, e^{iy\Delta} \, F_{B\mathrm{us},a_{1}a_{2}}^{r_{1}r_{1}'r_{2}r_{2}'}(x_{1},x_{2},y) \, .$$

14th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"

Definition of DPDs.

Bare position space DPDs:

$$F_{Bus,a_{1}a_{2}}^{\mathbf{r}_{1}\mathbf{r}_{2}\mathbf{r}_{2}^{\prime}}(x_{1},x_{2},\boldsymbol{y}) = (x_{1}p^{+})^{-n_{1}}(x_{2}p^{+})^{-n_{2}} 2p^{+} \int dy^{-} \frac{dz_{1}^{-}}{2\pi} \frac{dz_{2}^{-}}{2\pi} e^{i(x_{1}z_{1}^{-}+x_{2}z_{2}^{-})p^{+}} \\ \times \langle p | \mathcal{O}_{a_{1}}^{\mathbf{r}_{1}\mathbf{r}_{1}^{\prime}}(y,z_{1}) \mathcal{O}_{a_{2}}^{\mathbf{r}_{2}\mathbf{r}_{2}^{\prime}}(0,z_{2}) | p \rangle |_{y^{+}=0},$$

$$\mathcal{O}_{q}^{ii'}(y,z) = \bar{q}_{j'}(\xi_{-}) \left[W^{\dagger}(\xi_{-},v_{L}) \right]_{j'i'} \frac{\gamma^{+}}{2} \left[W(\xi_{+},v_{L}) \right]_{ij} q_{j}(\xi_{+}), \\ \mathcal{O}_{g}^{aa'}(y,z) = \left[G^{+k}(\xi_{-}) \right]^{b'} \left[W^{\dagger}(\xi_{-},v_{L}) \right]^{b'a'} \left[W(\xi_{+},v_{L}) \right]^{ab} \left[G^{+k}(\xi_{+}) \right]^{b}, \\ \frac{y + \frac{z_{1}}{2}}{y}$$

with $\xi_{\pm}=y\pm z/2$, $z^+=0$, z=0.

Bare momentum space DPDs:

$$F_{B\mathrm{us},a_{1}a_{2}}^{r_{1}r_{1}'r_{2}r_{2}'}(x_{1},x_{2},\Delta) = \int d^{2-2\epsilon} y \, e^{iy\Delta} \, F_{B\mathrm{us},a_{1}a_{2}}^{r_{1}r_{1}'r_{2}r_{2}'}(x_{1},x_{2},y) \, .$$

14th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"

Decomposing the colour structure of DPDs.

The colour indices in the definition of the DPDs can be coupled to an overall colour singlet in a variety of ways. [Mekhfi, 1985] In order to make this more systematic we:

- Couple the fields pairwise $(r_i \text{ and } r'_i)$ to irreducible representations R_i of SU(N) such that R_1R_2 is a colour singlet.
- Decompose the full colour structure in terms of these combinations:

$$F_{B_{\mathrm{us},a_1a_2}}^{r_1r_1'r_2r_2'}(x_1, x_2, \boldsymbol{y}) \sim \sum_{R_1, R_2} P_{R_1R_2}^{r_1r_1'r_2r_2' R_1R_2} F_{B_{\mathrm{us},a_1a_2}}(x_1, x_2, \boldsymbol{y})$$

In addition to $R_1R_2 = 11$ one finds the following colour non-singlet channels:

•
$$R_1R_2 = 88$$
 for $a_1a_2 = qq'$.

- $R_1R_2 = 8 A$ and 8 S for $a_1a_2 = qg$.
- $\blacktriangleright R_1R_2 = A A, S S, A S, S A, 10\overline{10}, \overline{10}10 \text{ and } 2727 \text{ for } a_1a_2 = gg.$

Rapidity divergences in colour non-singlet DPDs.

DPDs in colour non-singlet channels exhibit rapidity divergences, which cancel only when combined with the DPS soft factor [Buffing, Diehl, and Kasemets, 2017]:

$${}^{R_1R_2}F_B(x_1, x_2, y, \zeta_p) = \lim_{\rho \to \infty} \frac{{}^{R_1R_2}F_{Bus}(x_1, x_2, y, \rho)}{\sqrt{{}^{R_1}S_B(y, 2\ell_L(\rho, \zeta_p))}}, \qquad \qquad \text{DPS analog for TMD subtraction [Collins, 2011]}.$$

where the limit $\rho \rightarrow \infty$ corresponds to removing the rapidity regulator.

 \longrightarrow DPDs pick up a rapidity dependence, which is governed by a Collins-Soper type equation:

$$\frac{\partial}{\partial \log \zeta_p} \log^{R_1 R_2} F(x_1, x_2, y; \mu, \zeta_p) = {}^{R_1} J(y, \mu) / 2, \quad \text{with} \quad \frac{\partial}{\partial \log \mu^2} {}^{R_2} J(y; \mu) = -{}^{R_1} \gamma_J(\mu).$$

Renormalization of DPDs.

Renormalization of UV divergences.

Renormalized position space DPDs:

$${}^{R_1R_2}F(x_1,x_2,y,\mu,\zeta_p)=\sum_{R_1'R_2'}{}^{R_1\overline{R}_1'}Z(\mu,x_1^2\zeta_p)\underset{1}{\otimes}{}^{R_2\overline{R}_2'}Z(\mu,x_2^2\zeta_p)\underset{2}{\otimes}{}^{R_1'R_2'}F_B(y,\mu,\zeta_p).$$

with individual renormalization factors Z for each of the twist-2 operators in the definition of bare DPDs.

Double DGLAP equation for position space DPDs:

$$\begin{split} \frac{\partial}{\partial \log \mu^2} \, {}^{R_1 R_2} F_{a_1 a_2}(x_1, x_2, y, \mu, \zeta_p) &= \sum_{b_1, R_1'} {}^{R_1 \overline{R}_1'} P_{a_1 b_1}(\mu, x_1^2 \zeta_p) \mathop{\otimes}\limits_{1} {}^{R_1' R_2} F_{b_1 a_2}(y, \mu, \zeta_p) \\ &+ \sum_{b_2, R_2'} {}^{R_2 \overline{R}_2'} P_{a_2 b_2}(\mu, x_2^2 \zeta_p) \mathop{\otimes}\limits_{2} {}^{R_1 R_2'} F_{a_1 b_2}(y, \mu, \zeta_p) \,, \end{split}$$

14th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"

Small distance limit of DPDs.

Perturbative splitting in DPDs.

In the limit of small distance y (and correspondingly large Δ) the leading contribution to a DPD is due to the perturbative splitting of one parton into two:

$${}^{R_1R_2}F(x_1,x_2,\Delta;\mu,\zeta_p) = {}^{R_1R_2}W(\Delta;\mu,x_1x_2\zeta_p) \underset{12}{\otimes} f(\mu),$$

$${}^{R_1R_2}F(x_1, x_2, y; \mu, \zeta_p) = \frac{\Gamma(1-\epsilon)}{(\pi y^2)^{1-\epsilon}} {}^{R_1R_2}V(y; \mu, x_1x_2\zeta_p) \underset{12}{\otimes} f(\mu),$$

where

$$\left[V \underset{12}{\otimes} f\right](x_1, x_2) = \int_x^1 \frac{dz}{z^2} V\left(\frac{x_1}{z}, \frac{x_2}{z}\right) f(z) = \frac{1}{x} \int_x^1 dz \ V(uz, \bar{u}z) f\left(\frac{x}{z}\right)$$

with

$$x = x_1 + x_2$$
, $u = \frac{x_1}{x_1 + x_2}$, $\bar{u} = 1 - u$

Small distance limit of DPDs.

Perturbative splitting in DPDs.

In the limit of small distance y (and correspondingly large Δ) the leading contribution to a DPD is due to the perturbative splitting of one parton into two:

$$\begin{split} ^{R_1R_2}F(x_1,x_2,\Delta;\mu,\zeta_p) &= {}^{R_1R_2}W(\Delta;\mu,x_1x_2\zeta_p) \mathop{\otimes}\limits_{12} f(\mu) \,, \\ & \text{formally OPE of } \mathcal{O}(y,z_1)\mathcal{O}(0,z_2) \\ & \text{for } y \to 0 \\ \\ ^{R_1R_2}F(x_1,x_2,y;\mu,\zeta_p) &= \frac{\Gamma(1-\epsilon)}{(\pi y^2)^{1-\epsilon}} \, {}^{R_1R_2}V(y;\mu,x_1x_2\zeta_p) \mathop{\otimes}\limits_{12} f(\mu) \,, \end{split}$$

where

$$\left[V \underset{12}{\otimes} f\right](x_1, x_2) = \int_{x}^{1} \frac{dz}{z^2} V\left(\frac{x_1}{z}, \frac{x_2}{z}\right) f(z) = \frac{1}{x} \int_{x}^{1} dz V(uz, \bar{u}z) f\left(\frac{x}{z}\right)$$

with

$$x = x_1 + x_2$$
, $u = \frac{x_1}{x_1 + x_2}$, $\bar{u} = 1 - u$.

Calculation: Goals.

Goals of our calculation.

What we calculate and how we do this.

One of the last missing piece for colour non-singlet NLO DPS calculations in the framework of [Diehl, Gaunt, and Schönwald, 2017] are the NLO coefficients of the V splitting kernels.

- \longrightarrow Already calculated these for the colour singlet case. [Diehl, Gaunt, Plößl, and Schäfer, 2019]
- \longrightarrow Extend this now to the colour non-singlet sector. This will also allow us to study colour correlations in DPS.

For the actual calculation we first calculate ${}^{R_1R_2}W^{(2)}_{Bus}(\Delta,\rho)$ and then extract the renormalized ${}^{R_1R_2}V^{(2)}_{Bus}$ by performing a RGE analysis.

We perform the calculation for two different rapidity regulators:

- Collins regulator using space-like Wilson lines. [Collins, 2011]
- \blacktriangleright δ regulator. [Echevarria, Scimemi, and Vladimirov, 2016]

 \rightarrow First application (to our knowledge) of the Collins regulator to a two loop calculation!

Goals of our calculation.

What we calculate and how we do this.

One of the last missing piece for colour non-singlet NLO DPS calculations in the framework of [Diehl, Gaunt, and Schönwald, 2017] are the NLO coefficients of the V splitting kernels.

- \longrightarrow Already calculated these for the colour singlet case. [Diehl, Gaunt, Plößl, and Schäfer, 2019]
- \longrightarrow Extend this now to the colour non-singlet sector. This will also allow us to study colour correlations in DPS.

For the actual calculation we first calculate ${}^{R_1R_2}W^{(2)}_{Bus}(\Delta,\rho)$ and then extract the renormalized ${}^{R_1R_2}V^{(2)}_{Bus}$ by performing a RGE analysis.

We perform the calculation for two different rapidity regulators:

- Collins regulator using space-like Wilson lines. [Collins, 2011]
- \blacktriangleright δ regulator. [Echevarria, Scimemi, and Vladimirov, 2016]
- → Obtain identical results in both schemes!

Calculation:
$$W_{Bus}^{(2)}$$
.

From Feynman diagrams to $W_{Bus}^{(2)}$.

The NLO $a_0 \rightarrow a_1 a_2$ kernel $W^{(2)}_{Bus, a_1 a_2, a_0}$ can be obtained by calculating the DPD for partons a_1, a_2 in parton a_0 :

$$F_{\text{Bus},a_1a_2/a_0}^{(2)}(\Delta,\rho) = \sum_{b} \left[W_{\text{Bus},a_1a_2,b}^{(2)}(\Delta,\rho) \underset{12}{\otimes} f_{B,b/a_0}^{(0)} + W_{\text{Bus},a_1a_2,b}^{(1)}(\Delta,\rho) \underset{12}{\otimes} f_{B,b/a_0}^{(1)} \right] = W_{\text{Bus},a_1a_2,a_0}^{(2)}(\Delta,\rho)$$

At $\mathcal{O}(\alpha_s^2)$ we find the following splitting kernels:

- ▶ LO channels: $g \rightarrow gg$, $g \rightarrow q\bar{q}$, and $q \rightarrow qg$
- ▶ *NLO* channels: $g \to qg$, $q \to gg$, $q_j \to q_jq_k$, $q_j \to q_j\bar{q}_k$, $q_j \to q_k\bar{q}_k$

Note: Only LO channels exhibit rapidity divergences.

14th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"

Diagrams in orange give rise to rapidity divergences!

Evaluating real diagrams.

• $k_3 = k - k_1 - k_2$, • $k_1^+ = z_1 k^+$, $k_2^+ = z_2 k^+$, $\Delta^+ = 0$ • $k_3^+ = z_3 k^+ = (1 - z_1 - z_2) k^+$

 $F_{Bus}^{(2)} \text{ and thus } W_{Bus}^{(2)} \text{ is obtained from these diagrams by integrating over } k_1^-, k_2^-, \Delta^-, k_1, \text{ and } k_2 \text{:}$ $F_{Bus,a_1a_2/a_0}^{(2),\text{real}}(z_1, z_2, \Delta) = \sum_{\mathcal{G}} \left[\prod_{i=1}^2 (x_i p^+)^{-n_i} \int \frac{\mathrm{d}k_i^- \mathrm{d}^{D-2}k_i}{(2\pi)^D} \right] 2p^+ \int \frac{\mathrm{d}\Delta^-}{2\pi} \mathcal{G}_{a_1a_2/a_0}(k_1, k_2, \Delta)$

Performing momentum integrations.

First perform the integrations over minus components:

> The on-shell condition for parton a_3 can be used to perform one of the minus integrations, yielding:

$$k_3^- = \frac{k_3^2}{2z_3k^+}$$

▶ For the remaining minus integrations we use Cauchy's theorem.

After this perform the transverse momentum integrations:

- ▶ Use IBP relations to reduce the Feynman integrals to a finite set of master integrals.
- ▶ Use the method of differential equations to compute the master integrals:
 - ► Transform to Henn's canonical basis.
 - ▶ Use method of regions to obtain boundary conditions for the differential equations.

Dealing with rapdidity divergences.

How do we implement the rapidity regulators?

Wilson line propagator in the Collins regulator scheme:

$$\lim_{\varepsilon \to 0} \frac{1}{v_L^- k_3^+ + v_L^+ k_3^- + i\varepsilon} + \text{c.c.} = \frac{2}{v_L^- k^+} \operatorname{PV} \frac{z_3}{z_3^2 - k_3^2 z_1 z_2 / \rho} \qquad \text{with} \quad \rho = 2k_1^+ k_2^+ v_L^- / |v_L^+| \,,$$

for space-like Wilson lines along direction v_L with $v_L^- > 0$ and $v_L^+ < 0$.

Wilson line propagator in the δ regulator scheme:

$$\frac{1}{k_3^+ + i\delta^+} + \text{c.c.} = \frac{2}{k^+} \frac{z_3}{z_3^2 + z_1 z_2 / \rho} \qquad \qquad \text{with} \quad \rho = k_1^+ k_2^+ / (\delta^+)^2 \,.$$

 \rightarrow Keep only real parts of WL propagators (sum over complex conjugate diagrams)!

 \longrightarrow Taking $ho
ightarrow \infty$ removes the rapidity regulator and restores the light-like Wilson lines.

Dealing with rapdidity divergences.

How do we implement the rapidity regulators?

Using the following distributional expansions makes the rapidity divergences explicit as logarithms of the parameter ρ :

Collins regulator:

$$\lim_{\rho \to \infty} \operatorname{PV} \frac{z_3}{z_3^2 - k_3^2 z_1 z_2 / \rho} = \frac{1}{[z_3]_+} + \frac{1}{2} \delta(z_3) \left[\log \frac{\rho}{\Delta^2} - \log(z_1 z_2) - \log \frac{k_3^2}{\Delta^2} \right],$$

 δ regulator:

$$\lim_{\rho \to \infty} \frac{z_3}{z_3^2 + z_1 z_2 / \rho} = \frac{1}{[z_3]_+} + \frac{1}{2} \delta(z_3) \Big[\log \rho - \log(z_1 z_2) \Big] \,.$$

Note: For the Collins regulator it is crucial to use this identity before performing the IBP reduction!

Results: analytical results.

Analytic results.

General structure of results.

Colour non-singlet kernels:

$$\begin{split} ^{R_1R_2}V^{(2)}_{a_1a_2,a_0}(z,u,y,\mu,\zeta) &= {}^{R_1R_2}V^{[2,0]}_{a_1a_2,a_0}(z,u) + L \, {}^{R_1R_2}V^{[2,1]}_{a_1a_2,a_0}(z,u) \\ &+ \left(L\log\frac{\mu^2}{\zeta} - \frac{L^2}{2} + c_{\overline{\mathrm{MS}}}\right) \frac{{}^{R_1}\gamma^{(0)}_J}{2} \, {}^{R_1R_2}V^{(1)}_{a_1a_2,a_0}(z,u) \end{split}$$

where
$$L=\log rac{y^2 \mu^2}{b_0^2}$$
 and $b_0=2e^{-\gamma}$ and

$$\begin{split} V^{[2,0]}(z,u) &= V^{[2,0]}_{\text{regular}}(z,u) + \delta(1-z) \, V^{[2,0]}_{\delta}(u) \,, \\ V^{[2,1]}(z,u) &= V^{[2,1]}_{\text{regular}}(z,u) + \frac{1}{[1-z]_+} \, V^{[2,1]}_+(u) + \delta(1-z) \, V^{[2,1]}_{\delta}(u) \end{split}$$

Results: numerical investigations.

Impact of NLO corrections on small *y* DPDs.

We study how including the NLO corrections effects the small $y \ gg$ DPD for the following set of parameters:

- ▶ $y = 0.022 \, \text{fm}$
- ▶ $\mu = \frac{b_0}{y} = 10 \,\text{GeV}$
- $x_1 x_2 \zeta_p = \mu^2 = 100 \,\text{GeV}^2$

For this choice of parameters only the $V^{[2,0]}$ part of the kernels contributes to the final DPD.

In order to get a feeling for the relative importance of the logarithmic $V^{[2,1]}$ and double logarithmic $V^{(1)}$ parts we vary μ and $\sqrt{x_1 x_2 \zeta_p}$ by a factor of two around their central values.

 $|x_1x_2 {}^{RR}F_{gg}|.$

 ${}^{RR}F^{(2)}_{gg}/{}^{RR}F^{(1)}_{gg}.$

- moderate ($\mathcal{O}(10\%)$) NLO corrections.
- varied structure as a function of x_1 and x_2 .
- results rather independent of PDF sets used.

 $^{14^{\}mbox{th}}$ Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"

R = 1

R = A

B = 27

- ▶ large ($\mathcal{O}(100\%)$) NLO corrections for $\mu \neq \mu_y$.
- splitting form should be evaluated at $\mu \sim \mu_{
 m V}$ to avoid large higher order corrections.

 $^{14^{\}mbox{th}}$ Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"

Conclusion and outlook.

What's been done so far?

- Calculated the unpolarised NLO small y splitting kernels ${}^{R_1R_2}V^{(2)}_{a_1a_2,a_0}$ for all parton and colour channels.
- ▶ Used different rapidity regulator schemes, providing a strong cross check.
- First application of the Collins regulator in a two loop calculation.
- ▶ Studied numerically the impact of the NLO corrections to small *y* DPDs.

What's left to do?

- \blacktriangleright Calculate the polarised NLO small y splitting kernels.
- Calculate the NLO colour non-singlet evolution kernels (work in progress [Diehl, Fabry, and Vladimirov]).
- Calculate NLO colour non-singlet hard scattering cross sections.

Backup.

From $W_{Bus}^{(2)}$ to $V^{(2)}$.

Performing the rapidity subtraction.

A Fourier transform gives the bare unsubtracted NLO position space kernel as:

$$\frac{\Gamma(1-\epsilon)}{(\pi y^2)^{1-\epsilon}} \, {}^{R_1R_2} V^{(2)}_{Bus}(y,\rho) = \int \frac{d^{2-2\epsilon} \Delta}{(2\pi)^{2-2\epsilon}} \, e^{-i\Delta y} \, {}^{R_1R_2} W^{(2)}_{Bus}(\Delta,\rho) \, .$$

With this and the definition of the rapidity subtracted DPDs one then gets:

$${}^{R_1R_2}V_B^{(2)} = \lim_{\rho \to \infty} \left\{ {}^{R_1R_2}V_{Bus}^{(2)}(\rho) - \frac{1}{2} {}^{R_1}S_B^{(1)}(2\ell_L(\rho,\zeta)) {}^{R_1R_2}V_B^{(1)} \right\},$$

where the involved quantities on the right-hand side generally differ in the two regulator schemes, while the left-hand side is already independent of this choice!

From $V_B^{(2)}$ to $V^{(2)}$.

Performing the UV renormalization.

From the renormalization prescription for the DPDs one easily obtains that the renormalized position space splitting kernel is given by:

$${}^{R_1R_2}V(y,\mu,\zeta) = {}^{R_1\overline{R}'_1}Z(\mu,\zeta) \underset{1}{\otimes} {}^{R_2\overline{R}'_2}Z(\mu,\zeta) \underset{2}{\otimes} {}^{R'_1R'_2}V_B(y,\mu,\zeta) \underset{12}{\otimes} {}^{(11Z)^{-1}}(\mu)$$

The NLO position space splitting kernel ${}^{R_1R_2}V^{(2)}$ is then obtained by this relation in α_s to $\mathcal{O}(\alpha_s^2)$ as:

$$\begin{split} V^{(2)} &= V_{\text{fin}}^{(2)} - \left(\hat{P}^{(0)} \underset{1}{\otimes} \left[V_B^{(1)} \right]_1 + \hat{P}^{(0)} \underset{2}{\otimes} \left[V_B^{(1)} \right]_1 - \left[V_B^{(1)} \right]_1 \underset{12}{\otimes} P^{(0)} + \frac{\beta_0}{2} \left[V_B^{(1)} \right]_1 \right) \\ &+ \left(L \log \frac{\mu^2}{\zeta} - \frac{L^2}{2} + c_{\overline{\text{MS}}} \right) \frac{\gamma_J^{(0)}}{2} V^{(1)} + L \left(\hat{P}^{(0)} \underset{1}{\otimes} V^{(1)} + \hat{P}^{(0)} \underset{2}{\otimes} V^{(1)} - V^{(1)} \underset{12}{\otimes} P^{(0)} + \frac{\beta_0}{2} V^{(1)} \right) \end{split}$$

with $L = \log \frac{\mu^2 y^2}{b_0^2}$ and $b_0 = 2e^{-\gamma}$.

More on rapidity.

Rescaling of the rapidity parameter.

The rapidity parameters ζ_p and $\zeta_{\bar{p}}$ in this work are normalised as:

$$\zeta_p \zeta_{ar{p}} = (2p^+ ar{p}^-)^2 = s^2$$
 ,

which differs from the convention in the TMD case

$$\zeta ar{\zeta} = x^2 ar{x}^2 (2p^+ ar{p}^-)^2 = Q^4$$
 ,

where the rapidity parameters are normalized w.r.t. the extracted parton, which would be awkward in the DPD case where parton momenta often appear in convolution integrals.

 \rightarrow need to rescale the rapidity parameter in renormalisation factors and evolution kernels! \rightarrow reason: can only depend on the plus-momentum $x_i p^+$ of the parton to which they refer!

From light-cone gauge diagrams to Wilson line diagrams in Feynman gauge.

Kinematic limits.

Kinematic limits of the small *y* DPDs: Large $x = x_1 + x_2$.

 \longrightarrow logarithmic enhancement for plus distribution terms in the large x limit.

As a consequence one finds dominant contributions from the following kernels:

•
$$R_1R_2V_{gg,g}^{(2)}$$
 for $R_1R_2 \neq AA$, SS.

•
$$R_1 R_2 V_{q\bar{q},g}^{(2)}$$
 for all $R_1 R_2$.

•
$$R_1 R_2 V_{qg,q}^{(2)}$$
 for $R_1 R_2 = 11$.

 $14^{\mbox{th}}$ Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"

DESY.

Kinematic limits.

Kinematic limits of the small y DPDs: Small $x = x_1 + x_2$. For $V(uz, \overline{u}z) = w(u)/z^2$ one finds

$$\left[V \underset{12}{\otimes} f\right](x) = \frac{w(u)}{x} \left[\frac{1}{z} \otimes f\right](x) = w(u) E(x) \frac{f(x)}{x}$$

with an enhancement factor

$$E(x) = \begin{cases} k^{-1} \log(1/x) & \text{for } xf(x) = c \log^{k-1}(1/x), \\ (1-x^{\alpha})/\alpha & \text{for } xf(x) = c x^{-\alpha}, \end{cases}$$

 \longrightarrow small x enhancement for z^{-2} terms in the kernels (in analogy to z^{-1} terms in DGLAP kernels).

As a consequence one finds leading small x contributions from the following kernels:

•
$$R_1 R_2 V_{gg,g}^{(2)}$$
 for all $R_1 R_2$.

- $R_1 R_2 V_{q\bar{q},g}^{(2)}$ for all $R_1 R_2$.
- ▶ $R_1R_2V_{gg,q}^{(2)}$ for $R_1R_2 \neq AS$, SA ($(q \bar{q})(z)$ is not steep enough for small z).

Kinematic limits.

Kinematic limits of the small y DPDs: Small x_1 or x_2 .

Corresponds to the small $u = \frac{x_1}{x_1+x_2}$ and small $\bar{u} = \frac{x_2}{x_1+x_2}$ limit, with leading contributions going as u^{-1} and \bar{u}^{-1} associated with slow gluons.

$$u^{-1} \& \bar{u}^{-1} \colon {}^{R_1R_2}V^{(2)}_{gg,g}, {}^{R_1R_2}V^{(2)}_{gg,q}, \text{ and } {}^{R_1R_2}V^{(2)}_{qg,g} \text{ for all } R_1R_2, \\ \bar{u}^{-1} \colon {}^{R_1R_2}V^{(2)}_{qg,q}, \text{ and } {}^{R_1R_2}V^{(2)}_{qq',q} \text{ for all } R_1R_2.$$

Find two sources for this behaviour in small y DPDs:

• Explicit u^{-1} and \bar{u}^{-1} terms in the kernels.

► Terms in the kernels producing u^{-1} and \bar{u}^{-1} behaviour in the convolution with a PDF: $(1-z\bar{u})^{-1} \sim (k^+ - k_2^+)^{-1} (u^{-1}), (1-zu)^{-1} \sim (k^+ - k_1^+)^{-1} (\bar{u}^{-1})$ and similar terms.

Kinematic limits.

Kinematic limits of the small y DPDs: Small x_1 or x_2 .

Corresponds to the small $u = \frac{x_1}{x_1+x_2}$ and small $\bar{u} = \frac{x_2}{x_1+x_2}$ limit, with leading contributions going as u^{-1} and \bar{u}^{-1} associated with slow gluons.

$$u^{-1} \& \bar{u}^{-1} \colon {}^{R_1R_2}V^{(2)}_{gg,g}, {}^{R_1R_2}V^{(2)}_{gg,q}, \text{ and } {}^{R_1R_2}V^{(2)}_{qg,g} \text{ for all } R_1R_2, \\ \bar{u}^{-1} \colon {}^{R_1R_2}V^{(2)}_{qg,q}, \text{ and } {}^{R_1R_2}V^{(2)}_{qq',q} \text{ for all } R_1R_2.$$

Find two sources for this behaviour in small y DPDs:

• Explicit u^{-1} and \bar{u}^{-1} terms in the kernels.

► Terms in the kernels producing u^{-1} and \bar{u}^{-1} behaviour in the convolution with a PDF: $(1-z\bar{u})^{-1} \sim (k^+ - k_2^+)^{-1} (u^{-1}), (1-zu)^{-1} \sim (k^+ - k_1^+)^{-1} (\bar{u}^{-1})$ and similar terms.

