Search for heavy Higgs bosons

decaying to top quark pairs using the CMS experiment

Afiq Anuar, Samuel Baxter, Alexander Grohsjean, Jonas Rübenach, Christian Schwanenberger, Dominic Stafford

Terascale14 November 23, 2021

Overview Search for heavy Higgs

- Many BSM theories predict additional Higgs bosons, e.g. neutral, heavy,
 - CP even (H) and
 - CP odd (A) Higgs bosons
- Possible DM mediator
- Assume CP conservation: No interference between A and H
- Channel: $H/A \to t\bar{t} \to \ell\ell$

Motivation From previous results

- Preceding analysis done for 2016 CMS data (JHEP04(2020)171)
- Combining di- and semi-leptonic channels
- Masses of 400 to 750 GeV, rel. width: 2.5 to 25% with inter- and extrapolation
- Limits on A coupling strength showed deviation at m_A = 400 GeV and 4 % width
- Locally 3.5σ , globally 1.9σ

Several other recent analyses (arXiv:2002.12223, 1712.06518, 1903.00941) from ATLAS and CMS also show a small tension around this mass. (A/H \rightarrow $\tau\tau$, A \rightarrow Zh)

Strategy Data and simulation

- $t\bar{t} \rightarrow jj\ell\ell\nu\nu$, $\ell \in \{e,\mu\}$, CMS data from 2016 to 2018
- Simulate heavy Higgs resonance and interference separately
 - Different dependence on coupling g of the cross section σ

$$\sigma = g^4 \sigma_{
m res} + g^2 \sigma_{
m int} + \sigma_{
m SM}$$

- Kinematic reconstruction of top quarks from decay products
 - Assumptions: $m_{\rm t} =$ 172.5 GeV, $m_{\rm W} =$ 80.4, all $p_{\rm T,miss}$ from $\nu\nu$
 - 25 % resolution on m_{tt}

• Fit: Use invariant mass $m_{\rm ff}$ and $c_{\rm hel}$ (containing spin information)

Spin information: Chel

- Top's lifetime shorter than the spin decorrelation time
- · The leptons have high spin analyzing power
- · Use angle distribution of the leptons in their helicity frames

Spin information: Chel

Making the difference between SM and heavy Higgs scenarios visible

Particle definitions and cuts

Selection

- 2 leptons (ignoring taus)
 - opposite sign
 - Invariant mass of > 20 GeV
 - At least one with $p_{\rm T} > 25~{\rm GeV}$
 - $|\eta| < 2.4$
- 2 jets
 - $p_{\rm T} > 30 \ (20) \ {
 m GeV}$
 - One tagged a bottom
- Z-boson window cut
 - $m_{\ell\ell}$ ∉ [76; 106] GeV if same flavor
- *p*_{T,miss} > 40 GeV if same flavor

Data vs. Monte-Carlo agreement 2018 data and Standard Model

- Observed overall good agreement
- Slight slope in m_{II}, also slightly visible in Jet p_T
 - Known observation, possibly due to higher order effects

Input to the fit to derive limits

- Two dimensional histogram of $m_{
 m t\bar t}$ and $c_{
 m hel}$ unrolled
- Shown here: SM and natural width heavy Higgs

$$- \Gamma_{\mathsf{A}/\mathsf{H}} = \Gamma_{\mathsf{A}/\mathsf{H} \to t\bar{t}} \Leftrightarrow g_{\mathsf{A}/\mathsf{H}} = 1$$

Yukawa coupling uncertainty

 Dependence of higher order EW corrections of tt to Yukawa coupling Yt similar in shape to heavy Higgs at low masses

Figure taken from TOP-17-004,Γ: Neutral gauge boson, Higgs boson or pseudo-Goldstone boson

- Simulated EW corrections with Y_t varied ourselves
 - EW corrected histogram with $Y_t = 1$ (SM) as nominal
 - EW corrected with $Y_t = 1 \pm \sigma$ as Up/Down shape uncertainties
 - Using σ from arXiv:1804.02610 (^{+0.1381})_{-0.1158})
- Apply to SM tt

EW correction and Y_t variation

- EW correction weights binned in m_{tt}, scattering angle and flavor of initial particles
- *Y*_t variation shape at the same region as the 400 GeV heavy Higgs peak, making it a valuable uncertainty

Expected limits on coupling

Limits for individual years

• Natural width, mass points at 400 GeV, 600 GeV, 800 GeV, 1000 GeV

We are also considering additional signal points with different masses and widths

Summary and outlook

- Searching for A/H via $t\bar{t} \rightarrow \ell\ell$ using 2d distribution $m_{t\bar{t}}$ and c_{hel}
- $m_{t\bar{t}}$ and c_{hel} derived by reconstructing the t and \bar{t} using their decay products
- Probing for A/H up to masses of 1000 GeV
- Many upgrades on top of 2016 analysis strategy including Yukawa coupling uncertainty

Work ongoing to combine with $t\bar{t} \rightarrow \ell j$ channel analysis.

Backup

Data vs. Monte-Carlo agreement

Data vs. Monte-Carlo agreement

