Search for exotic decays of the Higgs boson into two light pseudoscalars in final states with muons and tau leptons

S. Consuegra Rodríguez¹, E. Gallo^{1,2}, A. Kalogeropoulos³, D. Pérez Adán¹, A. Raspereza¹

| 1 - DESY | 2 - University of Hamburg | 3 - Princeton University |

14th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale", 23-24 November 2021

Introduction

> Discovery of the SM Higgs boson will be a decade old by next year!

How do we directly search for new physics in the Higgs sector?

Exotic higgs decays natural signature of very broad class of beyond the SM theories 2 Higgs doublets MSSM, 5 physical Higgs bosons: h_{123}, H^+, H^- (already strongly constrained by existing data) • 2 Higgs doublets + 1 additional singlet (2HDM + 1S)7 physical Higgs bosons: $h_{123}, H^+, H^-, a_{12}$ under certain assumptions, phenomenology of $h \rightarrow aa \rightarrow x\bar{x}y\bar{y}$ decays determined by three independent parameters: B(h \rightarrow aa), tan β , and m_a

Direct searches: Benchmark scenario 2HDM+1S

Higgs-fermion couplings:

DESY. | Search for exotic decays of the Higgs boson into 2 light pseudoscalars in final states with μ and τ leptons | S. C. Rodríguez (DESY) | **Page 3**

Signal signature and analysis strategy

> probe low m_{a_1} region: $2m_{\tau} < m_{a_1} < 2m_b$ (highly boosted a_1 bosons \rightarrow collimated decay products)

 $H(125) \rightarrow a_1 a_1 \rightarrow (\mu \mu)(\tau_1 - \text{prong} \tau_1 - \text{prong})$

> target major production mode (ggH)

> tau leptons from $a_1 \rightarrow \tau \tau$ hadronic decays difficult to resolve by dedicated algorithm (Hadron+Strips) **Solution:** exploit $a_1 \rightarrow \tau_{1-\text{prong}} \tau_{1-\text{prong}}$ decays in $a_1 \rightarrow \tau \tau$ leg

> experimentally challenging non-isolated leptons in final state

Selection

Online selection: Trigger

> isolated single muon trigger (nearby muons not considered in isolation requirement)

> p_T threshold of 24 GeV (2016, 2018) and 27 GeV (2017)

Offline selection: Trigger

> use of muons and tracks as physics objects

Dimuon pair:

- opposite sign pair of muons
- one muon matches the trigger object
- $p_T(\mu_1) > 25$ (28 GeV), $p_T(\mu_2) > 3$ GeV
- $|\vec{p}_T(\mu_1) + \vec{p}_T(\mu_2)| > 45 \text{ GeV}$
- muon-muon pair with highest sum of p_T identified as the $a_1 \rightarrow \mu\mu$ candidate

Ditrack pair:

- opposite sign high purity tracks
- *p_T* > 2.5 GeV
- $|\vec{p}_T(\text{trk}_1) + \vec{p}_T(\text{trk}_2)| > 10 \text{ GeV}$
- track-track pair with highest sum of p_T identified as the $a_1 \rightarrow \tau \tau$ candidate

$\begin{array}{c} \Delta R_{\mu - \mu} < 1.5 \\ \Delta R_{trk - trk} < 1.5 \\ trk^{\mp} \\ a_{1}^{(1)} \\ a_{1}^{(1)} \\ trk^{\pm} \end{array} \begin{array}{c} \mu \\ h_{125} \\ \Delta R_{lso} < 0.2 \\ h_{lso} < 0.2 \end{array} \right)$

3 categories:

- lepton-lepton
- lepton-hadron
- hadron-hadron

Final selected sample:

> Dimuon+ditrack system (each of the muons and the tracks isolated within ΔR cone of 0.2)

Final discriminant

Binned distribution obtained with a Boosted Decision Tree classifier

Signal model:

DESY. | Search for exotic decays of the Higgs boson into 2 light pseudoscalars in final states with μ and τ leptons | S. C. Rodríguez (DESY) | **Page 7**

Background model

> estimated using a data-driven procedure

Background composition:

- > low mass Drell-Yan, tt, and QCD events
- > QCD contribution includes quarkonium states: ψ ', Y(1S), Y(2S), and Y(3S)

Control region	μ - μ	trk-trk	
ΝΝΝ	$N_{soft} > = 1$	$N_{soft} > = 1$	N _{soft} : number of "soft" tracks
Soft-Iso	$N_{soft} = 1, 2$	$N_{soft} = 1, 2$	($p_T > 1$ GeV, $d_{xy} < 1$ cm, and
00-Soft-Iso	$N_{soft} = 0$	$N_{soft} = 1, 2$	$d_z < 1$ cm) within ΔR cone of 0.2
Same-Sign	$N_{soft} = 0$	$N_{soft} = 0$	

> shape of multivariate distribution derived in control region NNNN

> validation with additional control regions (Soft-Iso and 00-Soft-Iso) relaxing isolation requirement (closure test in next slide)

Background validation

Closure test:

Shape in control region NNNN compared to sideband regions closer to the signal region for the hadronhadron category

CERN-THESIS-2020-181

> good agreement observed within the uncertainties

DESY. | Search for exotic decays of the Higgs boson into 2 light pseudoscalars in final states with μ and τ leptons | S. C. Rodríguez (DESY) | Page 9

Final discriminant: BDT output distribution

> Background distribution obtained after performing fit to data under background-only hypothesis in leptonhadron category

> Branching ratio: BR(H(125) $\rightarrow a_1 a_1 \rightarrow \mu \mu \tau \tau) = 0.01$

Systematic uncertainties

Source		^ ffootod	Tuno		
Source	value	Anecleu	туре		
		sample			
Stat. unc. related to		bkg.	bin-by-bin		
size of CR NNNN					
Extrapolation unc. in		bkg.	shape		
CR Same-Sign					
	2016, 2017, 2018				
Integrated luminosity	2.5%, 2.3%, 2.3%	signal	norm.		
Muon id. and trigger efficiency	2% per muon	signal	norm.		
Track Iso.	6–9% per track	signal	norm		
MC stat. unc. propagated in		signal	shape		
parameters of the pdf					
signal model					
(1 nuisance per parameter)					
Theoretical uncertainties in the signal acceptance					
μ_{R} and μ_{F} variations	0.8-2%	signal	norm.		
PDF	1-2%	signal	norm.		
Theoretical uncertainties in the signal cross sections					
$\mu_{R,F}$ variations ($gg \rightarrow H(125)$)	5-7%	signal	norm.		
$PDF(gg \rightarrow H(125))$	3.1%	signal	norm.		

> uncertainties in muon (track) momentum scale of 0.2 (0.4) % ---> negligible effect on final results

Results

> evaluated in terms of 95% CL upper limits on: BR(H(125) $\rightarrow a_1 a_1 \rightarrow \mu \mu \tau \tau$)

Interpretation of the results in the 2HDM+1S context

DESY. Search for exotic decays of the Higgs boson into 2 light pseudoscalars in final states with μ and τ leptons | S. C. Rodríguez (DESY) | Page 13

Interpretation of the results in the 2HDM+1S context

DESY. Search for exotic decays of the Higgs boson into 2 light pseudoscalars in final states with μ and τ leptons | S. C. Rodríguez (DESY) | Page 14

Interpretation of the results in the 2HDM+1S context

DESY. Search for exotic decays of the Higgs boson into 2 light pseudoscalars in final states with μ and τ leptons | S. C. Rodríguez (DESY) | Page 15

Summary

Analysis searching for the $\rm H(125) \rightarrow a_1a_1$ decay in final states with 2 muons and 2 tau leptons with Run 2 data is presented

> Search covers range of m_{a_1} between 3.6 and 21 GeV

> machine learning approach targeting the (semi-)boosted topologies

> Signal extraction: maximum likelihood fit applied to BDT output distribution

> Sensitivity evaluated in terms of observed 95% CL limit on $\sigma \cdot BR(H(125) \rightarrow a_1a_1 \rightarrow \mu\mu\tau\tau)/\sigma_{SM}$ ranging between 0.57 x 10^{-4} (m_{a1} = 12.4 GeV) and 2.29 x 10^{-4} (m_{a1} = 8.8 GeV)

> no evidence of exotic decays of h_{125} to light bosons

> exclusion power of analysis covers wide range of the parameter phase space of the different types of 2HDM+1S

> most stringent limits obtained for scenarios with enhanced couplings to leptons

more direct searches and precision measurements of the properties of h_{125} to come with the Run 3 data

Stay tuned!

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Sandra Consuegra Rodríguez (DESY) 0000-0002-1383-1837

CMS, Higgs Group sandra.consuegra.rodriguez@desy.de +49-40-8998-3264

> Additional material

Final discriminant: BDT output distribution

> Background distribution obtained after performing fit to data under background-only hypothesis

CERN-THESIS-2020-181

CMS Work in progress 2018, 59.7 fb⁻¹ (13 TeV) 2018, 59.7 fb⁻¹ (13 TeV) **CMS** Work in progress Events / bin Events / bin 10⁶ 10⁵ observed observed 10 bkg(+unc) bkg(+unc) 10³ m₂ = 10 GeV m_a = 10 GeV 10 10^{2} 10 10 102 10 10 10 10^{-2} 10⁻² obs/bkg obs/bkg -0.5 0.5 0 -1 -0.5 0.5 0 _1 **BDT Output BDT Output**

lepton-lepton

hadron-hadron

> Benchmarking signal normalization events (assuming SM xsec in ggH)

> Branching ratio: BR(H(125) $\rightarrow a_1 a_1 \rightarrow \tau \tau \tau \tau) = 0.01$

Results

- > evaluated in terms of 95% CL upper limits on: BR(H(125) $\rightarrow a_1 a_1 \rightarrow \mu \mu \tau \tau$)
- > Combination of all channels for 2016, 2017, and 2018 datasets

DESY. Search for exotic decays of the Higgs boson into 2 light pseudoscalars in final states with μ and τ leptons | S. C. Rodríguez (DESY) | Page 20