Search for charged Higgs Bosons in $H^+ \rightarrow Wh \rightarrow l\nu bb$ decays Simon Grewe

Supervised by: Dominik Duda, Hubert Kroha, Sandra Kortner

Max-Planck-Institut für Physik

14th Annual Helmholtz Alliance Workshop

Physics at the Terascale

23.11.2021

MAX-PLANCK-INSTITUT FÜR PHYSIK

Motivation

- Several extensions of the SM predict an extended Higgs sector
 - Supersymmetric models
 - Axion models ٠
 - Models explaining neutrino masses ٠
- Models with additional Higgs doublets or triplets predict electrically charged scalars H⁺
- Decay $H^+ \rightarrow Wh$ (h=125 GeV SM-like Higgs) is so far not explored by • ATLAS and CMS searches $BR(H^{+} \rightarrow Wh)$
 - $H^+ \rightarrow tb$ or $H^+ \rightarrow \tau \nu$ is thought to be the main decay mode for a heavy charged Higgs boson ٠ $[m(H^{+})>m(t)+m(b)]$
- Significant BR($H^+ \rightarrow Wh$) for:
 - 2HDM(2 Higgs Doublets) scenarios in which the 125GeV Higgs boson is the heaviest CP-even scalar
 - N2HDM(2 Higgs Doublets + Singlet) [https://arxiv.org/abs/1910.06858]
 - Georgi-Machacek model (Higgs Triplet model) [https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.015029]

N2HDM:

Analysis strategy

- Charged Higgs boson is produced in association with t and b (tbH $^+$)
- Charged Higgs boson decay mode: $H^+ \rightarrow Wh \rightarrow Ivbb$
 - Consider only events with one Lepton
 - Top quark decays fully hadronic: $t \rightarrow Wb \rightarrow qqb$
 - Multiple jets in the final state
 - 6 or more
 - Up to 4-b tagged
 - Missing transverse energy E_T^{miss}
- Challenge: reconstruct charged Higgs boson (mass)
 - Reconstruct $H^{\scriptscriptstyle +}$ from W and h
 - Reconstruct W from lepton and $E_{\rm T}^{\rm miss}$
 - Neutrino is reconstructed from missing transverse energy using W boson mass constrain technique
 - Reconstruct h from 2 jets (h \rightarrow bb)
- Use boosted decision trees (BDTs) to choose the correct combination of a W boson and two jets

BDT training and parameters

- Use BDT to reconstruct the 4-momentum of H^+ BDT paramters:
 - Evaluate every jet-jet-W combination and choose the one with the highest BDT response (max BDT response)
- Signal: correct jet pair and lepton neutrino combination of the tbH⁺ events
 - the jet pair with the smallest angular separation to the
 generator level Higgs boson is chosen
- Combinatorial background: wrong jet pair W combinations i.e not matched to H⁺decay
- Trained on sum of 3 charged Higgs boson mass points
 - 400 GeV, 800 GeV, 1600 GeV

- 600 Trees
- Max Depth=5
- Boosting Algorithm: Gradient Boost
 - Loss function: $L(F, y) = \ln\left(1 + e^{-2F(\mathbf{x})y}\right)$
- Separation: Gini Index gain(cell) = p(1-p)
- to the Training is based on: $p = n_S/(n_S + n_B)$
 - Higgs mass(i.e di-jet mass)
 - Flavor tagging information of Higgs jets
 - Azimuthal angle $\Delta \Phi$ between Higgs and W candidate
 - p_T^{Higgs}/m_{Wh} and P_T^W/m_{Wh}

Training Results

5

Training results

Variable name	Variable importance
Higgs boson mass	0.216
$p_{\mathrm{T}}^{h}/m_{Wh}$	0.200
$\Delta \Phi(h, W)$	0.183
p_{T}^W/m_{Wh}	0.175
b-tag score jet 1	0.123
b-tag score jet 2	0.105

Variable Importance: How often is a variable used to split, weighted by the separation gain squared and #events at node

Mass resolution

- Apply BDT to all possible lvjj combinations
- Choose the $H^+ \rightarrow Ivbb$ candidate with the highest BDT output value
- BDT successfully reconstructs charged Higgs boson
- Calculate: $\frac{m_{W+h}^{reco} m_{W+h}^{truth}}{m_{W+h}^{truth}}$
- Fit asymmetric Bukin function to data [https://github.com/root-project/root/blob/master/roofit/roofit/src/RooBukinPdf.cxx]

400 GeV

800 GeV

1600 GeV

Take variance

• FWHM/2.35

Two b-Tags

13%

16%

10%

Three b-Tags

13%

15%

11%

Four+ b-Tags

17%

17%

12%

Event selection

- Introduce additional selection criteria to enhance the signal (H^+) over the SM backgrounds
 - The dominant backgrounds stem from top quarks
- Cut based event selection
 - Compare shapes of different variables
 - Calculate $\frac{\#s}{\sqrt{\#b}}$ for different cut values to find the optimal selection citeria
- BDT not only reconstructs signal but can also distinguish between signal and SM backgrounds
- Categorize events by # b-tags
 - 2 tags
 - 3 tags
 - 4+ tags

 $P_{T}^{Higgs} > 100 GeV$ $p_T^W > 120 \text{ GeV}$ #Jets>5 BDT Response>0.7

- Define a control region (CR) to verify the $m_{\rm Wh}$ distribution of the SM backgrounds
- Ensure similar kinematic properties as in the SR
 - Define CR via max BDT response
- Find a region where m_{Wh} distribution of the SM backgrounds is similar wrt. m_{Wh} distribution in the SR
 - For most regions in BDT response this is the case
- Choose the region where the background is most enhanced over the signal

-0.5<max BDT<0.3 P_T^{Higgs} > 100GeV p_T^{W} >120 GeV #Jets>5

Expected limits on the tbH⁺cross section

- Signal region still blinded
- Perform maximum likelihood fit for the signal and background m_{Wh} distributions to pseudo data(drawn from background sum)
 - Simultaneous fit in the 2 b-tag, 3 b-tag and 4+ b-tag region
 - Use likelihood function:

$$L(\mu,\Theta) = \prod_{i}^{N_{category}} \prod_{j}^{N_{bins}} P(N_{i,j}|S_{i,j}(\mu,\Theta) + B_{i,j}(\Theta)) \prod_{m} f(\Theta),$$

- Expected limits competitive with $H^+ \rightarrow tb[https://arxiv.org/abs/2102.10076v1.]$
 - Both decay channels study similar final states
 - Background contributions are also similar

Conclusion/Next steps

- Feasibility of the search for the $H^+ \rightarrow Wh$ decays evaluated for the first time at the LHC
- A successful strategy for the $H^+ \rightarrow Wh \rightarrow l\nu bb$ channel has been developed
 - Charged Higgs bosons can be reconstructed by means of BDTs
- Expected limits: 0.121 pb (400 GeV) to 0.017 pb (1600 GeV)
 - Limits are comparable with those from the H⁺ searches in the $H^+ \rightarrow tb$ channel
- More H^+ signal mass points are being produced
 - Include these in the analysis
- Explore new methods to distinguish between $H^+ \rightarrow Wh \rightarrow l\nu bb$ and $H^+ \rightarrow Wh \rightarrow qqbb$ decays
 - Include both in the analysis