

Searches for non-resonant Higgs pair-production at ATLAS and CMS

Jason Veatch University of Göttingen (AG Lai)

Bundesministerium für Bildung und Forschung

Non-resonant HH production

- Observation of HH pair production is a top (HL-)LHC priority
- Standard Model production: directly measure Higgs potential
- SM predicts trilinear Higgs self-coupling λ
- Low cross sections due to interference
 - $\sigma_{ggF} \approx 31 \text{ fb } @ \sqrt{s} = 13 \text{ TeV}$
 - $\sigma_{VBF} \approx 1.73 \text{ fb } @ \sqrt{s} = 13 \text{ TeV}$

Non-resonant HH production

- Observation of HH pair production is a top (HL-)LHC priority
- Standard Model production
- Anomalous couplings
- Deviations from SM couplings could indicate BSM physics
 - $\kappa_{\lambda} = \lambda / \lambda^{SM}$
 - $\kappa_{2V} = C_{HHVV} / C_{HHVV}^{SM}$ (HHVV quartic coupling strength)
- κ_{λ} and κ_{2V} modify cross-section and kinematics

JHEP 06 (2019) 066

HH final states

	bb	ww	ττ	ZZ	ΥY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

Covered in this talk

- Numerous final states
- No single "golden" channel
 - Branching ratios

Terascale 2021

- Background suppression
- Kinematic regime sensitivity
- Combination of multiple channels
 necessary for observation

CMS resolved 4b

- Excellent BR from two H→bb decays
- Distinct 4 b-tagged jet final state
 - Additional 2 forward jets required for VBF selection
- BDT used to identify signal and classify ggF vs VBF topologies
- Huge QCD background estimated using data-driven techniques

ATLAS bbtt

- Good BR from $H \rightarrow bb$ and low background from $H \rightarrow \tau \tau$
- Two final states used τ_{had}τ_{had} and τ_{lep}τ_{had}
 - τ_{lep}τ_{had} channel further split by trigger selection (SLT and LTT)
- BDT- and NN-based discrimination
- Data-driven methods to estimate fake τ background
- More details in Chris' talk

ATLAS-CONF-2021-030

ATLAS bbtt

- MVA score used as the final discriminant in the fit
- Limits set on μ_{SM} and κ_{λ}

Channel	Observed	-1σ	Expected	+1σ	$\begin{array}{c} \begin{array}{c} \begin{array}{c} 10^{5} \\ H \end{array} \\ \begin{array}{c} \begin{array}{c} 10^{5} \\ H \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} 10^{4} \end{array} \end{array} \end{array} \xrightarrow{\begin{subarray}{c} 10^{5} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
ThadThad	4.95	3.19	4.43	6.17	$\int_{0}^{10^{3}}$ SM prediction
TlepThad	9.16	5.66	7.86	10.9	
Combined	4.65	2.79	3.87	5.39	10^2 Observed: K ₁ $\in [-24.92]$
ATLAS-CONF-2021-030					Expected: $\kappa_{\lambda} \in [-2.0, 9.0]$
					10^{1} -10 -8 -6 -4 -2 0 2 4 6 8 10 K _{λ}
					ATLAS-CONF-2021-052

ATLAS bbyy

- Good BR from H→bb and very low background from H→ $\gamma\gamma$
- Require di-photon triggers, two photons, and 2 b-tagged jets
- Events split into high- and low-mass regions
 - Targeting SM and BSM signals
- BDT used to separate signal from background
 - Loose and tight BDT regions defined

ATLAS-CONF-2021-016

ATLAS bbyy

- Signal extracted from a mγγ distribution fit
 - Continuum background exponential function from sidebands
 - Signal and single-Higgs bkg DSCB function from MC
- Limits set on μ_{SM} and $\kappa_{\!\lambda}$

- Require two photons and 2 b-tagged jets
- BDTs designed to distinguish ggF and VBF signals
- Categories defined based on invariant mass and BDT score
- Simultaneous 2D fit in $m_{\gamma\gamma}$ and m_{jj}

Jason Veatch

<u>JHEP03 (2021) 257</u>

137 fb⁻¹ (13 TeV) CMS C2V Observed Limits set on μ_{SM} , κ_{λ} , and κ_{2V} ulletObs. (exp.) limit: $\mu_{SM} < 7.7$ (5.2) ★ SM HH cat. Best fit HH cat. 68% CL HH cat. 95% CL _4 -2 0 2 8 10 κλ 137 fb⁻¹ (13 TeV) CMS CMS 137 fb⁻¹ (13 TeV) $\sigma_{HH} \ B(HH
ightarrow \gamma\gamma b\overline{b})$ (fb) σ_{VBF HH} B(HH → γγbb) (fb) 0______1 1 1 CL upper limits 95% CL upper limits $HH \rightarrow \gamma \gamma b \overline{b}$ $HH \rightarrow \gamma \gamma b\overline{b}$ Observed Observed 3.5 [-3.3,8.5] [-1.3, 3.5]Median expected Median expected 10^{2} 68% CL expected 68% CL expected 3 95% CL expected 95% CL expected Theoretical prediction Theoretical prediction 10 2.5 2 1.5 10^{-2} 0.5 0 10^{-3} -2 8 10 -3 -2 2 2 12 0 3 -6 0 4 6 -1 _4 1 4 κ_{λ} c_{2V} JHEP03 (2021) 257

- Limits set on μ_{SM} , κ_{λ} , and κ_{2V}
- Limits set on 12 EFT benchmarks and on function of C₂ coupling

- Limits set on $\mu_{SM},\,\kappa_{\lambda},\,and\,\kappa_{2V}$
- Limits set on 12 EFT benchmarks and on function of C2 coupling
- Combined with ttH to set limits on κ_λ and κ_t

ATLAS bblvlv

- HH→bb+WW*/ZZ*/ττ→bblvlv
- First look at channel
- 2 b-tagged jets and opposite sign 2 e/ μ
- Cuts on m_{II}, m_{bb} and DNN classifier
 - d_{HH} built from kinematic and topology variables

$$d_{HH} = \ln \left[p_{HH} / \left(p_{\text{Top}} + p_{Z-\ell\ell} + p_{Z-\tau\tau} \right) \right]$$

Obs. (exp.) limit: μ_{SM} < 40 (29)

	-2σ	-1σ	Expected	$+1\sigma$	$+2\sigma$	Observed
$\sigma (gg \rightarrow HH) [pb]$	0.5	0.6	0.9	1.3	1.9	1.2
$\sigma \left(gg \to HH \right) / \sigma^{\text{SM}} \left(gg \to HH \right)$	14	20	29	43	62	40

14

CMS bbZZ(4I)

- First look at HH→bbZZ^{*}→bbllll
- 2 b-tagged jets and two pairs of same flavor opposite sign e/μ
- Require m4l to be consistent with mH
- BDT used to discriminate against background and in fit

Summary plots

- Comparison of full Run 2 results to partial Run 2 combination
- Factor of ~2 gain from luminosity
- Additional gains from reconstruction and analysis improvements

ATLAS Combination

Statistical combination of bbττ and bbγγ results

ATLAS-CONF-2021-052

ATLAS 4b VBF

- First VBF HH results
- 4 central b-tagged jets and 2 forward jets
- Data-driven background estimate

Obs. (exp.) limit: µ_{SM} < 840 (550)

-0.56 (-0.91) < κ_{2V} < 2.89 (3.11)

<u>JHEP 07 (2020) 108</u>

CMS boosted 4b VBF

- First boosted VBF HH results
- Require two forward jets and two large-R jets
- Use ParticleNet NN to identify H→bb and jet mass regression
- Data-driven QCD background estimate
- κ_{2V} = 0 excluded at CL > 99.99%

Summary

- Search for non-resonant HH production is a key (HL-)LHC goal
- No single golden channel combination is necessary
 - Full Run 2 combination constrain σ_{HH} , κ_{λ} and κ_{2V}
 - $\kappa_{2V} = 0$ excluded
 - HEFT benchmark exclusions available
- Stay tuned for more full Run 2 results...

Thank you for your attention

