

Measurement of the $t\bar{t}H$ production cross-section with $H \rightarrow b\bar{b}$ in the boosted topology with the ATLAS detector

EFTYCHIA TZOVARA Supervisor: Prof. LUCIA MASETTI 14th Annual Helmholtz Alliance Workshop "Physics at the Terascale"

24.11.2021

Cluster of Excellence

Precision Physics, Fundamental Interactions and Structure of Matter GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Motivation

Event Selection and Reconstruction in single-lepton Boosted region

Analysis Strategy

Data/MC comparison & Truth studies in Boosted region

Fit process and results

Summary and Outlook

Backup

Higgs production and decay modes

Top Yukawa coupling:

- largest Higgs coupling to fermions
- sensitive to effects of physics Beyond SM

- ► For its **direct measurement**, most favourable:
 - Higgs production mode: $tar{t}H$
 - $\cdot~$ only contributes $\sim 1\%$ of total Higgs production cross-section
 - Higgs decay mode: $H o b ar{b}$
 - $\cdot~$ largest BR $\sim 58\%$
 - · Higgs kinematics reconstruction possible

$t\bar{t}H(H ightarrow b\bar{b})$ channel

- Challenge in measuring signal strength of this process due to:
 - highly complex FS
 - large SM backgrounds (especially $t\bar{t}$ + heavy-flavour jets)
 - \Rightarrow assignment of jets in FS (containing b-hadrons) to their original particles $\stackrel{becomes}{\longrightarrow}$ combinatorial problem
- Mitigate this challenge:
 - lepton+jets (semi-leptonic) tt decay: exploit lepton for background + combinatorics reduction + high statistics
 - Boosted topology: Higgs and/or hadronically decaying top \rightarrow boosted: high $p_T \sim$ rest mass \Rightarrow decay products collimated in large-R jets (R = 1.0)

Motivation

Event Selection and Reconstruction in single-lepton Boosted region

Analysis Strategy

Data/MC comparison & Truth studies in Boosted region

Fit process and results

Summary and Outlook

Backup

Event Selection & Reconstruction arXiv:2111.06712

# leptons	$==1 \ (p_T > 27 \ \text{GeV})$
$\#$ small- R^1 jets	$\geq 4~(p_T>25~{ m GeV})$
# b-tagged jets @85% w.p.	≥ 4

▶ First, searching for *Higgs candidate* requiring 1 Reclustered² jet with:

reco p_T [GeV]	300
mass [GeV]	[100-140)
subjets b-tagged @85% w.p.	==2
DNN P(true Higgs) ³	≥ 0.6

• if $\exists > 1$ such RC jets $\stackrel{choose}{\longrightarrow}$ that with mass closest to Higgs mass

¹formed from topological clusters using anti- k_t algorithm with R=0.4²(also *RC jets*) large-R jets (R=1.0), formed from small-R subjets ³DNN custom-made variable: DNN trained to quantify probability that an RC jet originated from Higgs

Event Selection & Reconstruction arXiv:2111.06712

► Additional selection requirement:

b-tagged jets 077% w.p. $\geq 2 \ (\neq \text{Higgs subjets})$

- ▶ Then, searching *Hadronic Top candidate*:
- if \exists RC jet with $p_T \ge 300 \text{ GeV} \rightarrow boosted reconstruction}$
- otherwise, reconstruction using low p_T small-R jets
- ► Finally, searching *Leptonic Top candidate*
- using small-R jet + lepton + neutrino
 - ▶ Higgs, Hadronic Top and Leptonic Top jets don't overlap
 - \blacktriangleright Events containing large-R jets passing boosted selection \rightarrow removed from resolved topology⁴
 - ► This reconstruction used to define input BDT variables

 ${}^{\mathbf{4}}\text{decay}$ products from Higgs/Top candidates well separated \rightarrow assigned to anti- k_t small-R jets

Motivation

Event Selection and Reconstruction in single-lepton Boosted region

Analysis Strategy

Data/MC comparison & Truth studies in Boosted region

Fit process and results

Summary and Outlook

Backup

Classification with Boosted Decision Tree (BDT):

- $\stackrel{enhance}{\longrightarrow}$ discrimination between $t\bar{t}H$ signal and backgrounds
- \xrightarrow{built} combining kinematic variables based on:
 - o resulting performance in terms of signal and bckg separation,
 - importance on training & correlations among them,
 - modelling & final fit results
- Input variables (arXiv:2111.06712):
 - invariant masses
 - transverse momenta
 - $\cdot\,$ angular separations of pairs of reconstructed jets
 - b-tagging scores
 - · DNN probability of true Higgs

• Measuring $t\bar{t}H(b\bar{b})$ signal strength (arXiv:2111.06712):

- in inclusive phase space
- templates divided in 5 true Higgs p_T bins (STXS formalism): $p_T^H \in$ [0,120), [120,200), [200,300), [300,450), [450, ∞) GeV

(binning discussed with CMS and theorists \rightarrow optimised to facilitate future combinations)

- Splitting signal regions⁵ (SR) into reconstructed Higgs p_T bins \rightarrow 2 boosted SR: reco $p_T^H \in [300,450)$ GeV & [450, ∞) GeV
- STXS framework (LHCHXSWG-2019-003): template fit to perform differential measurement
 - maximising sensitivity of measurement
 - benefiting from combination of measurements in all decay channels
- ▶ To get final $t\bar{t}H(b\bar{b})$ signal strength \rightarrow combine *single-lepton* boosted with single-lepton & dilepton resolved regions

⁵analysis regions with higher signal-to-background ratio

Motivation

Event Selection and Reconstruction in single-lepton Boosted region

Analysis Strategy

Data/MC comparison & Truth studies in Boosted region

Fit process and results

Summary and Outlook

Backup

Higgs and Hadronic Top mass distributions

- <u>Data</u> from pp collisions at $\sqrt{s} = 13$ TeV:
 - during 2015-2018 (full Run2)
 - integrated luminosity: $139 fb^{-1}$

- ▶ 43.6 $t\bar{t}H$ signal & 543.4 background (expected) events
- ▶ $t\bar{t} + jets$ main background process $\rightarrow t\bar{t} + 1 \ge b$ dominant
- good Data/MC agreement already pre-fit

Truth Studies

raction of events

- Checking which of true partons fall within large-R jets according to boosted topology
- **Higgs/Top**: complete and clean Higgs/hadronic-Top
- **semi-Higgs**: b leading (in p_T) from Higgs and b from leptonic Top
- semi-Top/-W: b from hadronic Top and q leading (in p_T) from W
- W: 2 q (sub-)leading in p_T from W
- **0**: none of these partons are in the reclustered jets
 - without any selection:

Higgs/hadronic-Top candidates not always correctly reconstructed

• with Boosted selection: significant increase in reconstruction efficiency of Higgs \rightarrow 91%, but also of hadronic-Top candidate

Motivation

Event Selection and Reconstruction in single-lepton Boosted region

Analysis Strategy

Data/MC comparison & Truth studies in Boosted region

Fit process and results

Summary and Outlook

Backup

Fit process

 Profile Likelihood fit performed combining single-lepton (boosted + resolved) & dilepton regions, simultaneously

- Input: classification BDT distribution $$\operatorname{in}\ensuremath{\mathsf{SR}}\xspace \to $\operatorname{final}\ensuremath{\mathsf{discriminant}}\xspace$ for fit $$$
- All systematic uncertainties included in fit function as Gaussian nuisance parameters (NPs)
- Free parameters:
 - $\cdot\,$ signal strength μ
 - $\cdot \;$ normalisation factor for $t\bar{t}+\geq 1b$ background: $k(t\bar{t}+\geq 1b)$

- Total uncertainty:
 - $\cdot\,$ effects of all systematic sources + MC statistical uncertainty \rightarrow constrained after fit

STXS measurement: asimov S+B all-uncertainties fit

- Comparing resolved-only (single-lepton + dilepton) fit with full combination resolved + boosted:
 - small differences in sensitivity in 3 lower p_T^H bins
 - $p_T^H \in [200, 300]$ GeV: \sim 7% improved uncertainties on μ
 - $p_T^H \in$ [300,450]GeV: \sim 36% improved uncertainties on μ
 - $p_T^H \in$ [450, ∞]GeV: \sim 73% improved uncertainties on μ
 - same $k(tt+ \geq 1b)$ uncertainties

TAS Inclusive & STXS Data S+B fit

Signal strength μ best fit-value arXiv:2111.06712 :

- ▶ Measured normalisation factor for $t\bar{t} + \ge 1b$ background: $k(t\bar{t} + \ge 1b) = 1.27 \pm 0.08$ (inclusive), 1.28 ± 0.08 (STXS)
- Observed (expected) significance of 1.0 (2.7) standard deviations
- Compatibility with SM expectation ($\mu_{SM} = 1.0$): 8.5%

Eftychia Tzovara

]G U

ATLAS Ranking sources of systematic uncertainty

- NPs with largest impact on signal strength μ, related to:
 - $\cdot t\bar{t}+ \geq 1b$ and tW bckg modelling
 - $\cdot t\bar{t}H$ signal modelling
- NPs corresponding to MC statistical uncertainties not included
- NPs with largest pulls:
- $tt+ \geq 1b$ ISR $\sim 1.2\sigma \rightarrow$ mostly driven by renormalisation scale
- p_T^{bb} shape (in $tt+ \ge 1b$ bckg) \rightarrow expected from pre-fit modelling
- ► <u>However</u>: boosted region → mostly dominated by statistics

Impact of NP (Δμ): comparing nominal best fit-value of μ with fit result when fixing NP to its best-fit value θ shifted by its pre-(post-)fit uncertainties ±Δθ(±Δθ)

▶ Black points: pulls of NPs relative to their nominal value θ_0 (lower scale)

24.11.2021

Motivation

Event Selection and Reconstruction in single-lepton Boosted region

Analysis Strategy

Data/MC comparison & Truth studies in Boosted region

Fit process and results

Summary and Outlook

Backup

Summary

- ▶ $t\bar{t}H(b\bar{b})$ measurement with full Run-2 data submitted to JHEP \rightarrow already available on arXiv:2111.06712
- Measurement also performed in p_T^H bins in STXS framework \rightarrow first differential measurement of $t\bar{t}H$ signal strength
- Measured signal strength corresponds to observed (expected) significance of $1.0\sigma~(2.7\sigma)$
- Background events dominated by $t\bar{t}$ +jets processes
- Measurement dominated by systematics $t\bar{t}+\geq 1b$ modelling
- Observed results: agreement with SM within large uncertainties
- ▶ Boosted selection targeting Higgs boson with high $p_T \rightarrow$ part of $t\bar{t}H(b\bar{b})$ analysis:
 - dominant contribution in $p_T^H > 300 \text{ GeV}$
 - small gain in sensitivity in inclusive- μ fit
 - quite large gain in sensitivity in STXS fit, especially in 2 highest p_T^H bins

Outlook

- Use ParticleFlow jets instead of calorimeter-only jets (current study)
- Further optimise kinematic object reconstruction of hadronic and leptonic Top candidates
- ▶ Include selection for ultra boosted Higgs (targeting $t\bar{t}H$ events with very high Higgs p_T decay products within a small-R jet)
- Investigate other MVA or DNN discriminating methods for background separation

Motivation

- Event Selection and Reconstruction in single-lepton Boosted region
- Analysis Strategy
- Data/MC comparison & Truth studies in Boosted region
- Fit process and results
- Summary and Outlook

Backup

Re-clustered jet mass definition

• Re-clustered jet mass $(m_{RC})^6$: for large-R jet J with constituents *i* with energy E_i , momentum $\vec{p_i}$ ($|\vec{p_i}| = E_i$)

$$m_{RC} = \sqrt{\left(\sum_{i \in J} E_i\right)^2 - \left(\sum_{i \in J} \vec{p}_i\right)^2} \tag{1}$$

· Large-R jets, formed from anti- $k_T R = 0.4$ jets, with anti- $k_T R = 1.0$, then trimmed requiring $\frac{p_{T_i}}{p_{T_{large-jet}}} \ge 0.1$

⁶based on arXiv:1407.2922 [hep-ph]

Boosted reconstruction: searching Hadronic & Leptonic Top candidates arXiv:2111.06712

- ► Hadronic Top cand. reconstruction: searching for additional reclustered jet (\neq Higgs cand. jet), with $p_T \ge 300$ GeV and P(true Top) ≥ 0.3
 - if $\exists > 1 \xrightarrow{choose}$ that w/ inv. mass closest to Top mass
- ► If Hadronic Top found → <u>Leptonic Top</u> reconstruction: searching for additional small-R jet
 - + neutrino + lepton,
 - w/ inv. mass \in [130,200] GeV
 - · Excluding small jets overlapping with Higgs or Hadronic Top
 - Neutrino reconstruction: using MET and W boson mass constraint
- if $\exists > 1 \text{ such small-R jets} \stackrel{choose}{\longrightarrow} \text{w/ inv. mass closest to Top mass}$
- if ∄ additional small-R jet → Leptonic top defined as sum of lepton and neutrino

Boosted reconstruction: searching Hadronic & Leptonic Top candidates arXiv:2111.06712

- ► If Hadronic Top <u>not</u> found → <u>Leptonic Top</u> reconstruction: small-R jets non-overlaping w/ Higgs cand. into account ^{considering} all possible combinations for Hadronic and Leptonic Top simultaneously:
 - small-R jets w/ inv. mass \in [70,195] GeV \rightarrow Hadronic Top
 - small-R jet + neutrino + lepton, w/ inv. mass \in [130,200] GeV \rightarrow Leptonic Top
- if $\exists > 1$ combinations for both $\stackrel{choose}{\longrightarrow}$ that w/ minimum: $|m_{HadTop}^{reco} - 172.5| + |m_{LepTop}^{reco} - 172.5|$
- If \nexists non-overlaping combinations $\stackrel{choose}{\longrightarrow}$
 - Hadronic Top reconstructed from 3 highest p_T small-R jets (non-overlap Higgs candidate)
 - · Leptonic Top reconstructed as sum of lepton and neutrino

Strategy (more info and plots here) (Glasgow group studies)

- <u>Aim</u>: simultaneous identification of Higgs and Top with DNN using RC jets⁷
- Setup:
- 3 layers of 100 nodes sequential DNN
- Training:
 - Jet by jet
 - Single lepton $t\bar{t}H$ sample
 - $\circ~$ all RC jets: $p_T \geq$ 200 GeV + \geq 2 subjets
 - 3 types of jets used for training:
 - $\cdot~$ Higgs: RC jet \rightarrow subjets ΔR matched to 2 true b-quarks
 - $\cdot~$ Top: RC jet \rightarrow subjets ΔR matched to
 - true b-quark + $\geq 1~\text{W}$ decay product
 - · QCD: all other RC jets

 $^7 \text{Reclustered}$ (RC) jets = large-R jets (R=1.0), formed from small-R (R=0.4) subjets

Strategy (Glasgow group studies)

- DNN input variables:
 - invariant masses
 - transverse momentum of subjets
 - jet substructure variables
 - $\cdot \ \Delta R$ separations btw subjets
 - pseudo continuous b-tagging (PCB) scores

• DNN output values: probabilities P(H), P(t), P(Q) for each type of jets

JG

BDT input variables in Boosted selection arXiv:2111.06712

Variable	Definition
$m_{bb}^{\rm Higgs}$	Higgs candidate mass
p_{T}^{H}	Higgs candidate transverse momentum
η_{lep}^{Higgs}	η of the Higgs candidate relative to the lepton
$P(H)_{\rm Higgs}$	DNN Higgs probability for the Higgs candidate
$m_{\rm had \ top}$	Hadronic top candidate mass
$p_{\mathrm{T}}^{\mathrm{had top}}$	Hadronic top candidate transverse momentum
$\eta_{\rm had \ top}^{\rm lep}$	η of the hadronic top candidate relative to the lepton
$B^i_{\rm had \ top}$	$i^{\rm th}$ largest jet $b\text{-tagging}$ discriminant associated to the hadronic top candidate
$m_{\rm lep\ top}$	Leptonic top candidate mass
$p_{\mathrm{T}}^{\mathrm{lep \ top}}$	Leptonic top candidate transverse momentum
$B_{\text{lep top}}$	b-tagging discriminant of the jet associated to the leptonic top candidate
n _{jets}	Small- R jets multiplicity
$\Delta R_{H,\text{had top}}$	ΔR between the Higgs and the hadronic top candidates
$\Delta R_{H\!,\rm lep \ top}$	ΔR between the Higgs and the leptonic top candidates
$\Delta R_{\rm had \ top, lep \ top}$	ΔR between the hadronic top and the leptonic top candidates
$p_{T}^{t\bar{t}H}$	$t\bar{t}H$ system transverse momentum
$p_{\mathrm{T}}^{t\bar{t}}$	$t\bar{t}$ system transverse momentum
$w_{b-\text{tag}}^{\text{sum}}$	Sum of $b\mbox{-tagging}$ discriminants of jets from Higgs, hadronic and leptonic top candidates
$w_{b-\mathrm{tag}}^{\mathrm{add jet}}$	Fraction of the sum of b -tagging discriminants of all jets not associated to Higgs or hadronic top candidates

▶ only a few high correlations among input variables

ErUM-FSP T02

TRExFitter

Profile likelihood method:

- Useful when fitting simultaneously:
 - \cdot parameter(s) of interest μ
 - \cdot nuisance parameter(s) θ encoding effects of systematic uncertainties
- Allows for reduction of systematic uncertainties, by effectively performing in-situ calibrations
- Profile likelihood ratio \rightarrow significance

$$\lambda(\mu) = \frac{\mathcal{L}(\mu = \mu_0, \hat{\hat{\theta}}_{\mu})}{\mathcal{L}(\hat{\mu}, \hat{\theta})} \qquad (2)$$

conditional likelihood: $\hat{\hat{\theta}}_{\mu}$ best-fit value for given $\mu = \mu_0$ maximises \mathcal{L}

unconditional likelihood: $\hat{\theta}$ overall best-fit value maximises \mathcal{L}

Signal and Background modelling

Nominal model:

- tt
 *t*H: PowHeg+Pythia8
 (used in training of classification BDT in all channels)
- $t\bar{t}+ \ge 1b$: PowHeg+Pythia8 $t\bar{t}b\bar{b}$ (4FS) (used in training of classification BDT in all channels)
- tt̄+ ≥ 1c and tt̄+ light: PowHeg+Pythia8 tt̄ (5FS) (used in training of classif. BDT in single lepton channels)
- also other backgrounds (used in training of classification BDT in single lepton boosted channels)

Generators used for MC samples arXiv:2111.06712

Process	ME generator	ME PDF	PS	Normalisation	
Higgs boson					
tīH	PowhegBox v2	NNPDF3.ONLO	Pythia8.230	NLO+NLO (EW) [19]	
	PowhegBox v2	NNPDF3.ONLO	HERWIG7.04	NLO+NLO (EW) [19]	
	MADGRAPH5 aMC@NLO v2.6.0	NNPDF3.0NL0	PVTHIA8 230	NLO+NLO (EW) [19]	
tH ib	MADGRAPH5 aMC@NLO v2.6.2	NNPDF3.0NLOnf4	PVTHIA8 230		
tWH	MadGraph5_aMC@NLO v2.6.2 [DR]	NNPDF3.ONLO	Pythia8.235	-	
$t\bar{t}$ and single-top)				
tī	PowhegBox v2	NNPDF3.0NL0	Pythia8.230	NNLO+NNLL [45,46,47,48,49,50,51]	
	PowhegBox v2	NNPDF3.ONLO	HERWIG7.04	NNLO+NNLL [45,46,47,48,49,50,51]	
	MadGraph5_aMC@NLO v2.6.0	NNPDF3.ONLO	Pythia8.230	NNLO+NNLL [45,46,47,48,49,50,51]	
$t\bar{t} + b\bar{b}$	PowhegBoxRes	NNPDF3.0NLOnf4	Pythia8.230	_	
	Sherpa v2.2.1	NNPDF3.0NNL0nf4	Sherpa	-	
tW	PowhegBox v2 [DR]	NNPDF3.ONLO	Pythia8.230	NLO+NNLL [52,53]	
	POWHEGBOX v2 [DS]	NNPDF3.ONLO	Pythia8.230	NLO+NNLL [52,53]	
	POWHEGBOX v2 [DR]	NNPDF3.ONLO	HERWIG7.04	NLO+NNLL [52,53]	
	MADGRAPH5_aMC@NLO v2.6.2 [DR]	CT10NL0	Pythia8.230	NLO+NNLL [52.53]	
t-channel	PowhegBox v2	NNPDF3.0NLOnf4	Pythia8.230	NLO [54.55]	
	PowhegBox v2	NNPDF3.0NLOnf4	HERWIG7.04	NLO [54,55]	
	MadGraph5_aMC@NLO v2.6.2	NNPDF3.0NLOnf4	Pythia8.230	NLO [54,55]	
s-channel	PowhegBox v2	NNPDF3.ONLO	Pythia8.230	NLO [54,55]	
	PowhegBox v2	NNPDF3.ONLO	HERWIG7.04	NLO [54,55]	
	MadGraph5_aMC@NLO v2.6.2	NNPDF3.0NL0	Pythia8.230	NLO [54,55]	
Other					
W + jets	Sherpa v2.2.1 (NLO [2j], LO [4j])	NNPDF3.0NNL0	Sherpa	NNLO [56]	
Z+ jets	Sherpa v2.2.1 (NLO [2j], LO [4j])	NNPDF3.ONNLO	Sherpa	NNLO [56]	
VV (had.)	Sherpa v2.2.1	NNPDF3.ONNLO	Sherpa	-	
VV (lep.)	Sherpa v2.2.2	NNPDF3.ONNLO	Sherpa	_	
VV (lep.) + jj	Sherpa v2.2.2 (LO [EW])	NNPDF3.ONNLO	Sherpa	-	
$t\bar{t}W$	MadGraph5_aMC@NLO v2.3.3	NNPDF3.ONLO	Pythia8.210	NLO+NLO (EW) [19]	
	Sherpa v2.0.0 (LO [2j])	NNPDF3.ONNLO	Sherpa	NLO+NLO (EW) [19]	
tīll	MADGRAPH5_aMC@NLO v2.3.3	NNPDF3.ONLO	Pythia8.210	NLO+NLO (EW) [19]	
	Sherpa v2.0.0 (LO [1j])	NNPDF3.ONNLO	Sherpa	NLO+NLO (EW) [19]	
$t\bar{t}Z (qq, \nu\nu)$	MADGRAPH5_aMC@NLO v2.3.3	NNPDF3.ONLO	Pythia8.210	NLO+NLO (EW) [19]	
/	Sherpa v2.0.0 (LO [2j])	NNPDF3.ONNLO	SHERPA	NLO+NLO (EW) [19]	
tĒtĒ	MADGRAPH5_aMC@NLO v2.3.3	NNPDF3.1NLO	Pythia8.230	NLO+NLO (EW) [57]	
tZq	MadGraph5_aMC@NLO v2.3.3 (LO)	CTEQ6L1	Pythia8.212		
tWZ	MADGRARH5 aMC@NLO v2 3 3 [DR]	NNPDE3 ONLO	PVTHIAS 220	_	

Systematic uncertainties modelling

► Sources of systematic uncertainty affecting tt̄ + jets bckg modelling arXiv:2111.06712:

Uncertainty source	Description		Components
$\begin{array}{l} t\bar{t} \mbox{ cross-section} \\ t\bar{t}+\geq 1b \mbox{ normalisation} \\ t\bar{t}+\geq 1c \mbox{ normalisation} \end{array}$	$\pm 6\%$ Free-floating $\pm 100\%$		$\begin{array}{l} t\bar{t}+{\rm light}\\ t\bar{t}+\geq\!\!1b\\ t\bar{t}+\geq\!\!1c \end{array}$
NLO matching PS & hadronisation ISR FSR	MadGraph5_aMC@NLO+Pythia: PowhegBox+Herwig7 vs. Powhe Varying α_S^{ISR} (PS), $\mu_R \& \mu_F$ (ME) Varying α_S^{FSR} (PS)	8 vs. PowhegBox+Pythia8 xgBox+Pythia8 in PowhegBoxRes+Pythia8 in PowhegBox+Pythia8 in PowhegBoxRes+Pythia8 in PowhegBox+Pythia8	$ \begin{aligned} & \text{All} \\ & \text{All} \\ & t\bar{t} + \geq 1b \\ & t\bar{t} + \geq 1c, \ t\bar{t} + \text{light} \\ & t\bar{t} + \geq 1b \\ & t\bar{t} + \geq 1c, \ t\bar{t} + \text{light} \end{aligned} $
$t\bar{t} + \geq 1b$ fractions $p_{\rm T}^{bb}$ shape	PowhegBox+Herwig7 vs. PowhegBox+Pythia8 Shape mismodelling measured from data		$\begin{array}{l} t\bar{t}+1b/1B,t\bar{t}+\geq\!2b\\ t\bar{t}+\geq\!1b \end{array}$

• Dedicated p_T^{bb} modelling systematic, derived

- to cover Higgs p_T mis-modelling, assigned to $t\bar{t}+\geq 1b$ bckg
- derived in inclusive dilepton/single-lepton SRs
- normalisation effects removed
- weight computed in each p_T^H bin: ratio between data and MC
- weights for single-lepton also applied in boosted channel

Analysis regions: Signal regions (SR)

• $t\bar{t}+\geq 1b$ dominant background in all regions

Analysis regions: Control regions (CR)⁷

Dilepton

• event yield used in fit to correct amount of $t\bar{t}+\geq 1c$ background

► Single-lepton resolved

- shape and normalisation of ΔR_{bb}^{avg} distribution to better constrain the bckg contributions and correct their shape
- ▶ $t\bar{t}+ \ge 1b$ dominant background in all regions
- ► Classif. BDT in SR & event yield (ΔR_{bb}^{avg}) distributions in dilepton (single-lepton) CR \rightarrow combined in profile likelihood fit

- *lo*: (≥)n b@70, <n b@60
- *hi*: (≥)n b@60

⁷analysis regions depleted in signal, with b-tagging w.p.:

Reconstructed Higgs boson candidate p_T

Inclusive measurement: asimov S+B all-uncertainties fit

- Comparing resolved-only (single-lepton + dilepton) fit with full combination resolved + boosted:
 - \sim 6% improved uncertainties on μ
 - same $k(tt+\geq 1b)$ uncertainties