Di-Higgs Production in Extended Higgs Sectors

Duarte Azevedo

In collaboration with: H. Abouabid, A. Arhrib, J. Falaki, P. Ferreira, M. M. Mühlleitner, R. Santos.

Institute for Theoretical Physics (ITP) Institute for Astroparticle Physics (IAP) Karlsruher Institut für Technologie Germany

14th Annual meeting of the Helmholtz Alliance

November 23rd-24th, 2021

Duarte Azevedo

Di-Higgs@BSM

3

Overview

Introduction

- Goals and methodology
- Experimental state-of-the-art
- How to enhance di-Higgs production

2 Main results

- Impact of resonant searches
- Impact of non-resonant searches

3 Conclusions

< ロ > < 同 > < 回 > < 回 > < 回 > <

э.

Introduction	Goals and methodology
Main results	
Conclusions	

Introduction

イロン イロン イヨン イヨン

∃ < n < 0</p>

- A scalar particle was discovered in 2012^{1,2} that is so far compatible with the SM Higgs boson...
- ...but we need new physics. Dark matter, baryon asymmetry, neutrino masses, among others. It can be provided by extended scalar sectors.
- Observed channels contain one scalar, thus only *HXX* (*X* some SM particle) can be inferred from signal rates.
- Di-Higgs production allows to peer into the scalar self-couplings, which uncovers the scalar potential and EWSB patterns.
- Problem: in the SM there is destructive interference between its box and triangle diagrams.
- BSM physics can in many ways overcome this!

²Phys. Lett. B 716 (2012) 30

< ロ > < 同 > < 三 > < 三 >

э.

¹Phys. Lett. B 716 (2012) 1-29

Introduction	Goals and methodology
Main results	
Conclusions	

- How and by how much BSM extended sectors can enhance di-Higgs production.
- The impact of di-Higgs constraints $(pp \rightarrow (...) \rightarrow h_{SM}h_{SM})$ on the parameter spaces of BSM.
- Promising di-scalar exotic channels and cascading scalar decays with multiple SM-like Higgs (not discussed).
- Validity between BSM SMEFT mapping for cross-section computation (not discussed).

The models:

Goals

- R2HDM CP-conserving (h, H, A, H^{\pm})
- C2HDM CP-violating (*H*₁, *H*₂, *H*₃, *H*[±])
- N2HDM CP-conserving (H_1 , H_2 , H_3 , A, H^{\pm})
- NMSSM CP-conserving $(H_1, H_2, H_3, A_1, A_2, H^{\pm})^3$
- \rightarrow We considered the \mathbb{Z}_2 symmetric versions to inhibit FCNC.

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

³Capitalization and subscript numbering refer to mass ordering.

ntroduction	Goals and methodology
lain results	
Conclusions	

Main codes: $ScannerS^4$ and $NMSSMCalc^5$

- Most pertinent theoretical and experimental constraints.
- We applied di-Higgs constraints manually.

Cross-sections computations:

- Single Higgs rates w/ SusHi⁶ @13TeV@NNLO_QCD.
 - Resonant searches constrain this quantity!
- Double Higgs rates w/ HPAIR⁷ (and variations):
 - NLO born-improved heavy top-quark mass limit.
 - Preliminary scans: 2 * $\sigma_{H\!H}$ @ LO @ 14 TeV, due to computational time.
 - K-factors are in the ballpark of 1.4 (non SM-like Higgs) and 1.9 (for SM-like Higgs)⁸.
 - Non-resonant searches constrain this quantity, under conditions!
- \rightarrow In forthcoming paper, our specific BPs are presented @NLO.

 \rightarrow Please contact us if you need specific benchmarks for di-scalars production (inc. non-SM-like) and cascading scalar processes (multiple scalar final state).

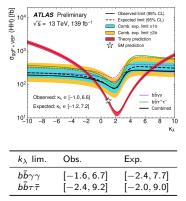
・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

3

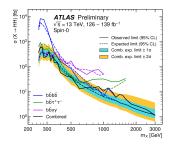
⁴arXiv: 2007.02985

⁵arXiv: 1312.4788

⁶arXiv: 1605.03190


⁷http://tiger.web.psi.ch/proglist.html

⁸arXiv: 1705.05314


Introduct Main res Conclusi	Its Experimental state-of-the-art
Experimental state-of-the-art	

 \rightarrow Analyses are divided into non-resonant (SM) and resonant ones (SM + HSP).

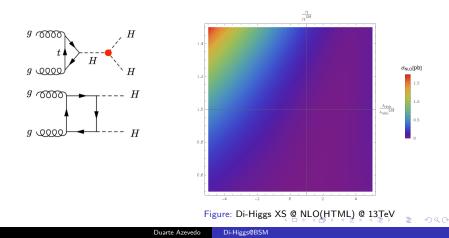
Continuum

Resonant

- $b\bar{b}\gamma\gamma$ low mass region
- $b\bar{b}\tau\bar{\tau}$ intermediate mass region
- *bbbb* intermediate mass region

.∋...>

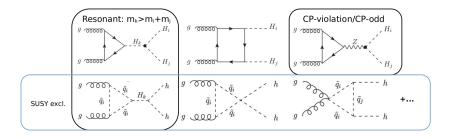
- \rightarrow We considered the individual channels limits.
- \rightarrow Extended scalar sectors include both contributions and interferences.


troduction	Goals and methodology
	How to enhance di-Higgs production

How to enhance di-Higgs production

Cross-section recommendations by the LHCXSWG

<u>√s</u>	7 TeV	8 TeV	13 TeV	14 TeV	27 TeV	100 TeV
σ _{NNLO FTapprox} [fb]	6.572	9.441	31.05	36.69	139.9	1224


By varying the trilinear and Yukawa couplings

Introduction	Goals and methodology
Main results	
Conclusions	How to enhance di-Higgs production

How to enchance di-Higgs production

By the inclusion of additional diagrams

New contributions and interferences will depend:

- Trilinear couplings (many!).
- Masses.
- Particle widths.

∃ ► < ∃ ►</p>

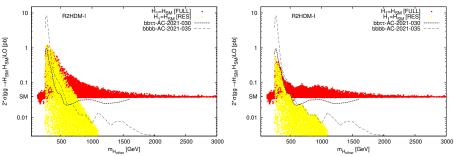
э

mpact of resonant searches mpact of non-resonant searches

Main results

メロト メヨト メヨト メヨト

= 990


Impact of resonant searches

After resonant bounds

Impact of resonant searches

R2HDM-I: h is SM-like

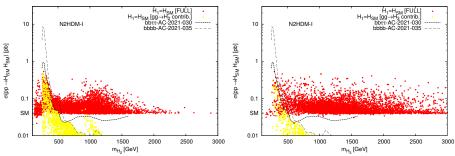
Before resonant bounds

- Resonant searches are sensitive to all models.
- $b\bar{b}\gamma\gamma$ constrains the lowest resonant mass region.
- For heavy second Higgs mass \rightarrow decoupling limit \rightarrow retrieve SM rates.
- For models considered, there is a low value for di-Higgs rates.

Image: Image:

★ ∃ ► < ∃ ►</p>

э


Impact of resonant searches

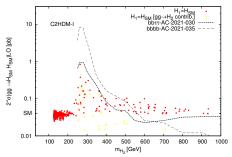
 H_3 contribution

Impact of resonant searches

N2HDM-I: H₁ is SM-like

H_2 contribution

- Resonant searches are sensitive to both contributions.
- Further constraint on trilinear $\lambda_{ijk} < \lambda_{SM}(m_h = 700 \text{ GeV}) = 5976.61 \text{ GeV} \rightarrow 1/3$ of points removed.
- Resonances can have $\Gamma(H_i)/m_i > 5\% \rightarrow NWA$ is not valid.
- Exclude points where $\Gamma(H_i)/m_i > 50\% \rightarrow \text{minor impact.}$


< ロ > < 同 > < 回 > < 回 >

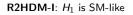
Impact of resonant searches Impact of non-resonant searches

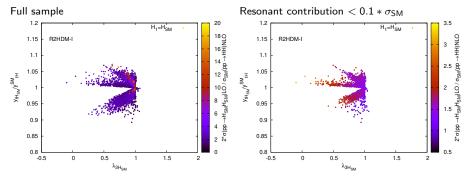
NMSSM

Impact of resonant searches

C2HDM-I

H1=HSM [FULL H₁=H_{SM} [gg→H₂ contrib. bbtt-AC-2021-030 10 NMSSN bbbb-AC-2021-035 2*σ(pp →H_{SM} H_{SM})LO [pb] 0.1 SM 0.01 100 200 300 400 500 600 700 800 900 1000 m_{Ho} [GeV]

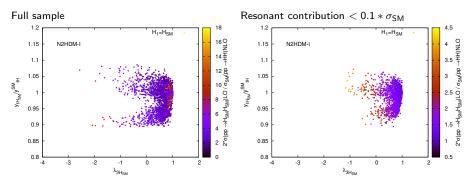

- Constraints push model to degeneracy $m_2 \approx m_3 \rightarrow$ takes longer to produce valid parameter points.
- Experimentally, model is very similar to R2HDM, in this channel.


- Parameter space is more constrained due to SUSY relations \rightarrow di-Higgs limits had small impact.
- Some points also have $\Gamma(H_i)/m_i > 5\% \rightarrow NWA$ is not valid.

イロト イボト イヨト イヨト

Impact of resonant searches

Impact of resonant searches


- Trilinear upper limits are mainly due to perturbative unitarily. ۲
- Wedge is due to unitarily too, present in all T1 models where H_1 is SM-like and R2HDM T2 where H_1 is SM-like.
- Type 2 models, top Yukawa is more constrained from single Higgs data.
- For the models considered, resonant searches (alone) do not constrain this projection of the parameter space. < ∃ →

Introc	luction
Main	results
Conc	lusions

Impact of non-resonant searches

Impact of non-resonant searches

- The strongest constraint comes from $b\bar{b}\gamma\gamma$: $\sigma_{hh} < 4.3 * \sigma_{hh}^{SM}$.
- We apply non-resonant limits if $\sigma_{hh}^{\text{res}} < 0.1 * \sigma_{hh}^{\text{SM}}$.

- Non-resonant alone also cannot constrain trilinear coupling. ۲
- Need both resonant and non-resonant to constrain the parameter space on these models.

< ロ > < 同 > < 三 > < 三 >

э

Conclusions

メロト メロト メヨト メヨト

∃ < n < 0</p>

- Resonant searches are sensitive to all our models.
- Resonant searches are essential for second Higgs searches.
- We need **both resonant and non-resonant** searches to constrain the SM-like trilinear.
- Di-Higgs rates have a lower minimum, which in principle would allow for full exclusion (very far future).

 \rightarrow Please contact us if you need specific benchmarks for di-scalars production (inc. non-SM-like) and cascading scalar processes (multiple scalar final state).

Thank you!

イロト イヨト イヨト -

= nav