

Exotic Higgs Decays: ATLAS Search for Higgs Decays to Two Light Scalars

Judith Höfer

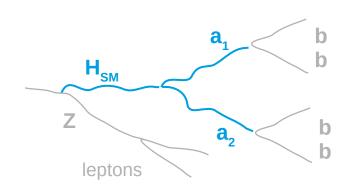
With special thanks to Claudia Seitz, Rickard Ström, Priscilla Pani, and Beate Heinemann

Terascale Annual Meeting, November 23rd 2021

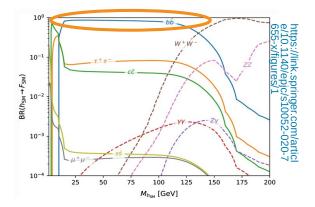
CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Process: Higgs decay to two light scalars

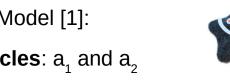
Objects used in the analysis


Event selection & categorization

Reconstruction methods

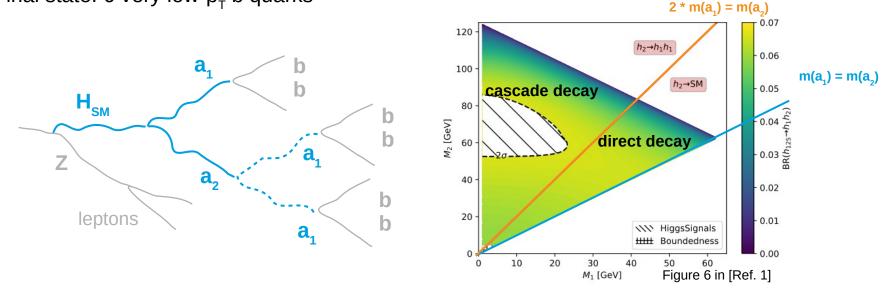

Exotic Higgs Decays

Two additional scalars: direct decays.

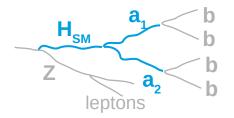

- Search for particles predicted by the Two Real Singlet Model [1]:
 - Predicts existence of two additional Higgs-like particles: a₁ and a₂
 - + Large coupling to each other, other couplings inherited from $H_{_{\rm SM}}$
- In our search:
 - Consider them to be lighter that the $H_{SM}(m(H_{SM}) = 125 \text{ GeV})$
 - + Look at the process $H_{_{SM}} \rightarrow a_1 a_2 \rightarrow 4b$

• Final state: 4 very low- p_{τ} b quarks

[1] Robens, Stefaniak, Wittbrodt. Two-real-scalarsinglet extension of the SM: LHC phenomenology and benchmark scenarios. EUR PHYS J *C*, 80(2). 2020. arXiv:1908.08554



DESY. | Judith Höfer | ATLAS Search for Higgs Decays to Light Scalars | Terascale meeting, Nov 23rd 2021 |


Exotic Higgs Decays

Two additional scalars: cascade decays.

- If $m(a_2) > 2 m(a_1)$: cascade decay possible
- Final state: 6 very low- p_{τ} b quarks

- Consider ZH_{SM} production
 - \rightarrow 2 leptons (e or mu) in final state to trigger on

– Zh (50,70) GeV

--- Zh (30,80) GeV

Zh 60 GeV

200

250

Signal characterized by two leptons and 4 (or 6) low-p_T
 b quarks in the final state

Entries / 6.3 GeV

300

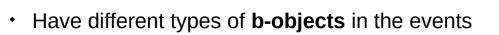
250

200

150

100

50


ATLAS Simulation work-in-progress $\sqrt{s} = 13 \text{ TeV}, 139.0 \text{ fb}^{-1}$

100

Selection: yield comparison

SOLARBv3p3

50

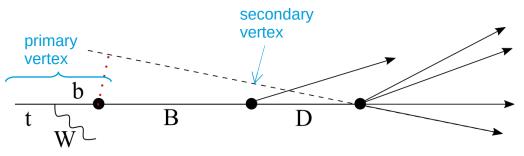
1) regular b-jets (ATLAS DL1r tagger [2])

with a $p_{_{\rm T}}$ threshold lowered to 15 GeV

[2] ATLAS Collaboration. ATLAS b-jet identification performance

150

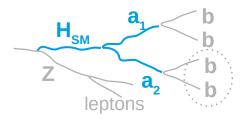
p_ of the 3rd leading jet [GeV]

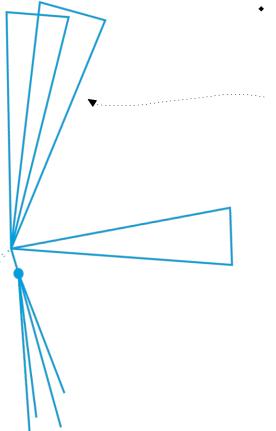

and efficiency measurement with tt events in pp collisions at \sqrt{s} =13 TeV.

Eur. Phys. J. C 79, 970, CERN, 2019.

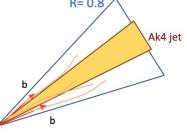
FTag Interlude

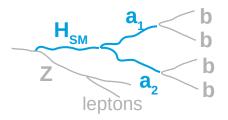
b-tagging with the DL1r tagger.

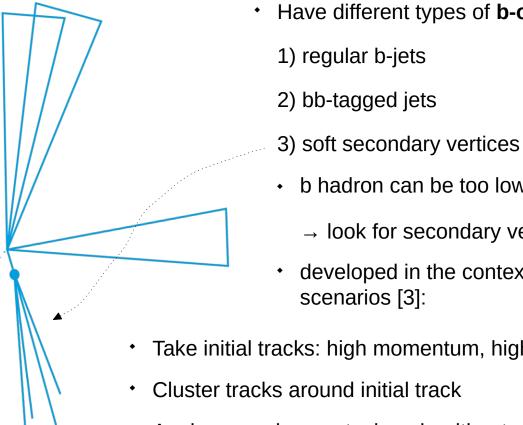

- Hadrons containing b quarks tend to have a longer lifetime than other hadrons
 - \rightarrow jets from b hadrons have recognizable features



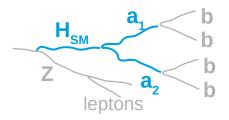
1) secondary vertices

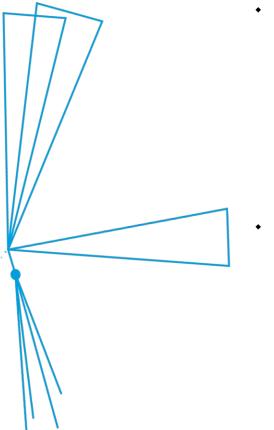

2) tracks have larger **impact parameter**: distance of the track pass-by to the primary vertex


- DL1r tagger is a deep neural network, inputs are secondary vertex and track variables
- Output is a tagger discriminant: probability to be a b-jet
- Different working points: different cuts on discriminant



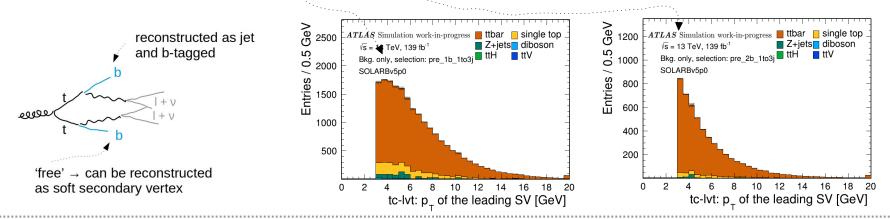
- Have different types of b-objects in the events
 - 1) regular b-jets
 - 2) bb-tagged jets
 - + For low a_1/a_2 boson masses the boson is boosted and the decay products merge
 - \rightarrow reconstruct two b hadrons inside of **one** jet
 - group developed a specialized bb-tagger for low- p_{τ} region DeXTer: Deep Sets based Neural Networks for Low- p_{τ} $X \rightarrow bb$ identification
 - tagger runs on regular R = 0.4 jets, use tracks inside 0.8 cone as additional input R = 0.8





- Have different types of **b-objects** in the events
 - 1) regular b-jets
 - 2) bb-tagged jets

- tc-lvt tagger [3] ATLAS Collaboration. Soft b-hadron tagging for compressed SUSY scenarios. Technical Report ATLAS-CONF-2019-027, CERN, 2019.
- b hadron can be too low in p_{τ} to reconstruct a jet
 - \rightarrow look for secondary vertices outside of jets
- developed in the context of searches for compressed SUSY scenarios [3]:
- Take initial tracks: high momentum, high impact parameter
- Cluster tracks around initial track
- Apply secondary vertexing algorithm to the cluster (instead of a jet)


- Have different types of b-objects in the events
 - 1) regular b-jets
 - 2) bb-tagged jets
 - 3) soft secondary vertices
- Ensure coherent event interpretation:
 - Remove overlap between jet collections
 - Remove any soft secondary vertex close to a jet

Calibration of Soft Secondary Vertices

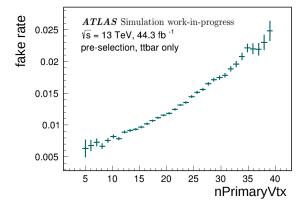
Efficiency and fake rate scale factors.

- Calibration = correction of the reconstruction efficiency in MC to data
- Get two scale factors:
 - An efficiency SF
 - A fake rate SF
- Measure in data in a regions where we expect
 - * many 'true' soft SVs \rightarrow efficiency
 - few 'true' soft SVs \rightarrow fake rate

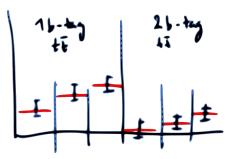
di-leptonic ttbar with exactly 1 or exactly 2 b-jets

SF = -

$$\frac{1}{\varepsilon}MC$$

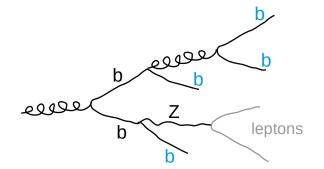

DESY. | Judith Höfer | ATLAS Search for Higgs Decays to Light Scalars | Terascale meeting, Nov 23rd 2021 |

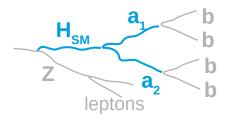
Calibration of Soft Secondary Vertices


Extraction.

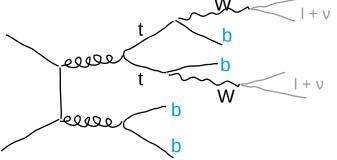
• Fake soft SVs are mostly random track crossings

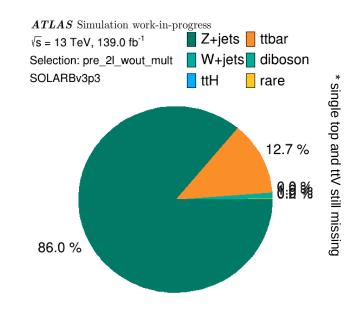
 $\rightarrow\,$ fake rate depends on the pile-up / number of primary vertices


- Extract the efficiency SF and the fake rate SF in bins of the number of primary vertices
- Do a combined fit in the 1b and 2b region to extract them simultaneously

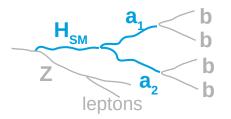

Event Selection

And background composition.


Main backgrounds: Z+jets and ttbar



- Lepton pre-selection cuts: require
 - Leptons of same flavour, opposite charge in signal: Z $\rightarrow e^+ e^-$ or $\mu^+ \mu^-$
 - Lepton invariant mass in Z mass window 85 GeV < mll < 100 GeV
 - \rightarrow good rejection of ttbar
 - → Z+jets main background



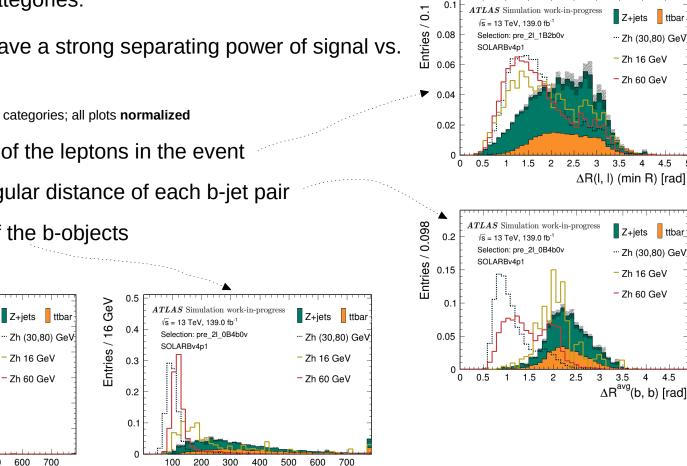
(example diagrams)

Event Categories

Fully and partially reconstructed.

- b-tagged and bb-tagged jets are built from the same collection of 0.4 jets, so for each jet:
 - try if it bb-tagged
 - If not: try if it is b-tagged
 - If not: light jet
- Existence of bb-jets, b-jets and soft SVs leads to many multiplicity regions / event categories
- Events can be **fully** reconstructed: all b-quarks are in a reconstructed object

2 bb, 1bb 2b, 1bb 1b 1 sv, 4b, 3b 1sv (for non-cascades)


• Or **partially** reconstructed: one or more objects are lost (detector acceptance, tagger efficiencies ...)

1 bb 1b, 3 b, ...

DESY. | Judith Höfer | ATLAS Search for Higgs Decays to Light Scalars | Terascale meeting, Nov 23rd 2021 |

Reconstruction Methods

Variables to discriminate signal from background.

In different event categories:

Several variables have a strong separating power of signal vs. background

example plots in different event categories; all plots normalized

angular distance of the leptons in the event

Zh 16 GeV

- Zh 60 GeV

600

M_{BB} (max pT) [GeV]

700

- average over angular distance of each b-jet pair
- Invariant mass of the b-objects

Simulation work-in-progress

s = 13 TeV, 139.0 fb⁻¹

SOLARBv4p1

Selection: pre 2l 2B0b0v

200

100

300

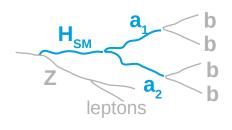
400

500

0.6

0.5

0.4


0.3

0.2

0.1

Entries / 16 GeV

M_{bbbb} (max pT) [GeV]

0.1

√s = 13 TeV, 139.0 fb⁻ Selection: pre_2l_1B2b0v

SOLARBv4p1

Z+jets 🛛 ttbar

.... Zh (30,80) GeV

- Zh 16 GeV

- Zh 60 GeV

4 4.5

Z+jets ttbar

... Zh (30,80) GeV

- Zh 16 GeV - Zh 60 GeV

3.5

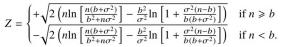
3

3

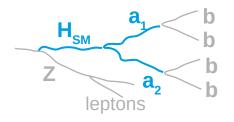
3.5 4 4.5

 $\Delta R^{avg}(b, b)$ [rad]

Reconstruction Methods


Cut and count study.

- Define signal regions: optimize cuts by maximizing the 'significance' [4] (approximation formula for p-value)
- Get expected exclusion limit with simplified fit:


 \boldsymbol{ATLAS} Simulation work-in-progress

signal mass	$16 \mathrm{GeV}$	$60 {\rm GeV}$	(30, 80) GeV	
expected limit on signal strenght μ from simplified fit	10%	18%	8%	

[4] Buttinger, Lefebvre. Formulae for Estimating Significance. Technical Report ATL-COM-GEN-2018-026, CERN, 2018.

- assume BR(H \rightarrow aa \rightarrow bbbb) = 100 %
- fit only in signal regions (no control regions)
- assume flat 20% systematic uncertainty
- get limit on signal strength parameter $\boldsymbol{\mu}$
- Other (very promising) ideas for the event reconstruction:
 - Build a neural network that gives a suggestion of which objects to pair to reconstruct the light scalars
 - Use a BDT for signal background discrimination

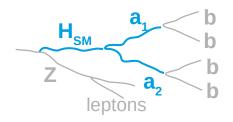
- Decays of the SM Higgs boson to light scalars (of different mass) could be important since there is still sizable room of ~ 20% [5] for non-SM Higgs decays
- Introducing multiple reconstruction methods for b-hadrons enhances the possibility to reconstruct the signal
- Several very promising variables with strong separating power of signal vs. background

[5] ATLAS Collaboration. A combination of measurements of Higgs boson production and decay using up to 139fb⁻¹ of proton-proton collision data at \sqrt{s} = 13 TeV collected with the ATLAS experiment. Technical Report ATLAS-CONF-2020-027, CERN, 2020. \rightarrow Table 8

Thanks for your time and attention! Any questions? :)

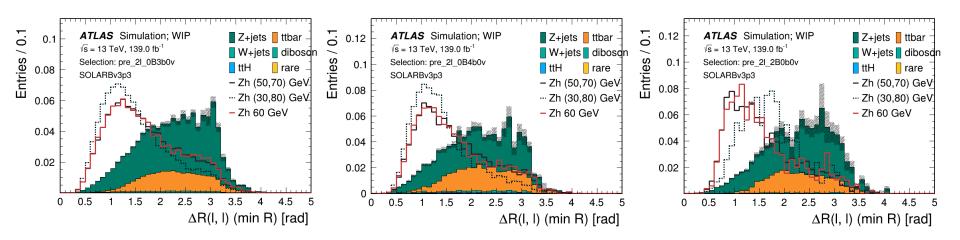
Contact

DESY. Deutsches Elektronen-Synchrotron

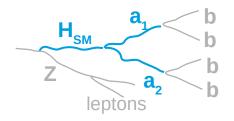

www.desy.de

Judith Höfer judith.hoefer@desy.de

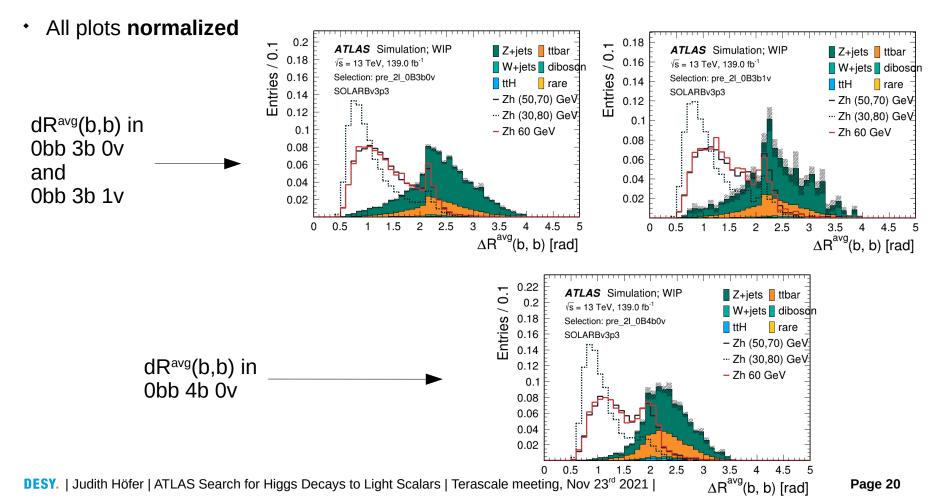
References


- [1] Tania Robens, Tim Stefaniak, and Jonas Wittbrodt. Two-real-scalar-singlet extension of the SM: LHC phenomenology and benchmark scenarios. *The European Physical Journal C*, 80(2): 15, Feb 2020. ISSN 1434-6052. doi: 10.1140/epjc/s10052-020-7655-x. URL https://doi.org/10.1140/epjc/s10052-020-7655-x.
- [2] ATLAS Collaboration. ATLAS b-jet identification performance and efficiency measurement with tt⁻ events in pp collisions at s√=13 TeV. Eur. Phys. J. C 79, 970, CERN, 2019.
 URL <u>https://doi.org/10.1140/epjc/s10052-019-7450-8</u>
- [3] ATLAS Collaboration. Soft b-hadron tagging for compressed SUSY scenarios. Technical Report ATLAS-CONF-2019-027, CERN, Geneva, Jul 2019. URL <u>https://cds.cern.ch/record/2682131</u>.
- [4] William Buttinger and Michel Lefebvre. Formulae for Estimating Significance. Technical Report ATL-COM-GEN-2018-026, CERN, Geneva, Oct 2018. URL <u>https://cds.cern.ch/record/2643488</u>.
- [5] ATLAS Collaboration. A combination of measurements of Higgs boson production and decay using up to 139fb⁻¹ of proton-proton collision data at √s= 13 TeV collected with the ATLAS experiment. Technical Report ATLAS-CONF-2020-027, CERN, Geneva, Aug 2020.
 URL <u>http://cds.cern.ch/record/2725733</u>.
- [previous analysis] ATLAS Collaboration. Search for the Higgs boson produced in association with a vector boson and decaying into two spin-zero particles in the H → aa → 4b channel in pp collisions at √s = 13 TeV with the ATLAS detector. *Journal of High Energy Physics*, 2018 (10), Oct 2018. ISSN 1029-8479. doi: 10.1007/jhep10(2018)031. URL http://dx.doi.org/10.1007/JHEP10(2018)031.

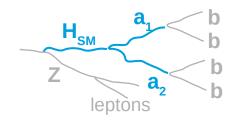
Discriminating Variables dR(I,I)



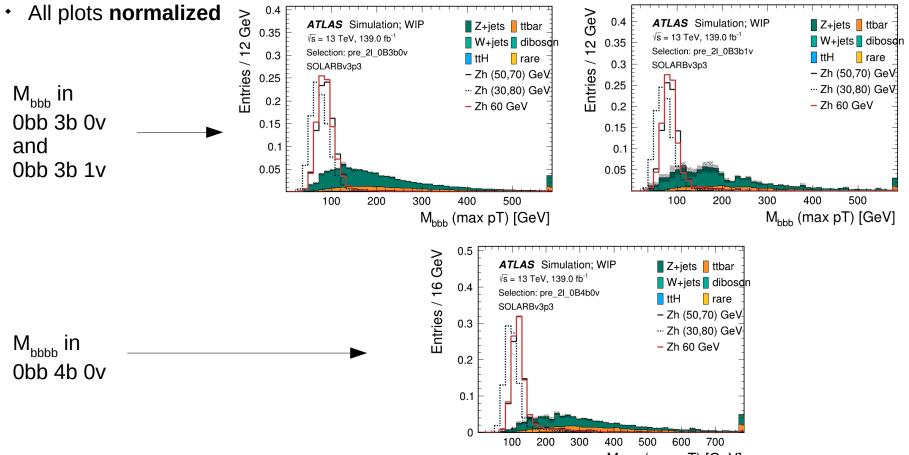
- dR(I,I) = angular distance of the leptons in the event
- In signal, Z comes from ZH process, which tends to have higher pT than in the Z+jets process
 - \rightarrow decay products (leptons) tend to be closer together in signal
- has separating power in all categories


plots in different event categories; all plots normalized

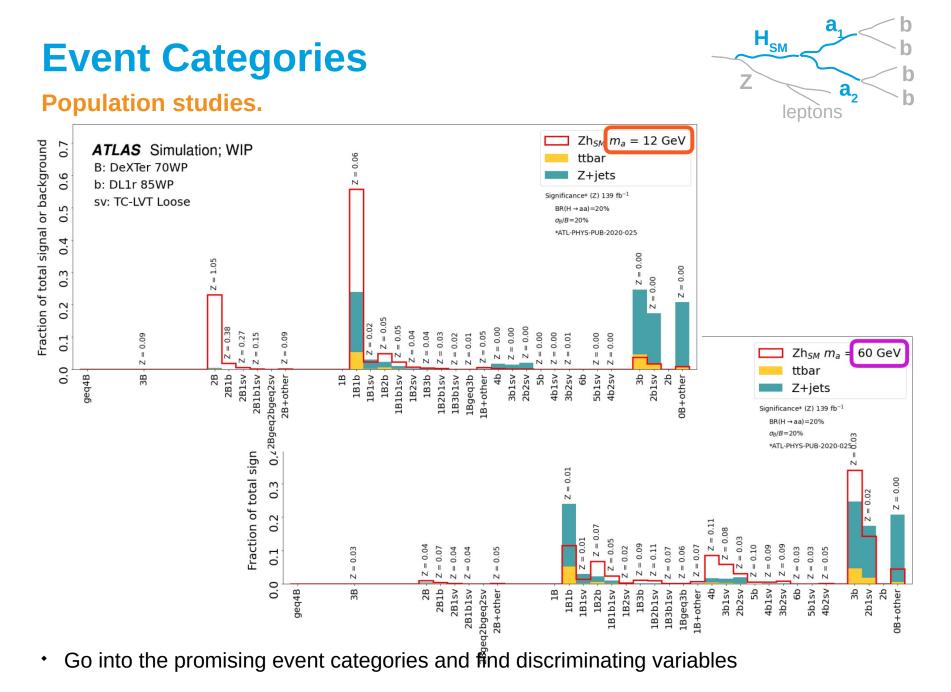
Discriminating Variables dR^{avg}(b,b)



 In signal, the average over the dR of each b-jet pair tends to be smaller than in background, since bs come from one a boson



Discriminating Variables


Invariant masses

- In signal, the invariant mass of the b-jets (M $_{\rm bbb}$ and M $_{\rm bbbb}$) reconstructs to \leq or \sim the Higgs mass

DESY. | Judith Höfer | ATLAS Search for Higgs Decays to Light Scalars | Terascale meeting, Nov 23rd 2020bb (max pT) [GeV]

DESY. | Judith Höfer | ATLAS Search for Higgs Decays to Light Scalars | Terascale meeting, Nov 23rd 2021 |