Search for heavy resonances decaying to tW

<u>Alexander Fröhlich</u>¹, Johannes Haller¹, Roman Kogler², Artur Lobanov¹, Matthias Schröder¹

 1 Universität Hamburg, 2 DESY Hamburg

Terascale Alliance Meeting 2021 DESY Hamburg

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Benchmark Model: Excited b Quarks

right-handed
$$(\kappa_L^b = g_L = 0, \kappa_R^b = g_R = 1)$$

• vector-like ($\kappa_L^b = g_L = 1$, $\kappa_R^b = g_R = 1$)

- ATLAS^a at 8 TeV
- CMS^b at 8 TeV
- new: CMS (all-hadronic final state)^c at 13 TeV
- new: CMS $(\ell + jets final state)^d$ at 13 TeV
 - combination of all-hadronic and ℓ +jets search
 - most stringent limits:

Limits [TeV]				
LH	RH	VL		
3.0	3.0	3.2		

^aJHEP 02 (2016) 110 ^bJHEP 01 (2016) 166 ^carXiv: 2104.12853; submitted to JHEP ^darXiv: 2111.10216; submitted to JHEP

- top quark and W boson boosted due to high $m_{\rm b^*}$
- focus on final state merged top jet and merged W jet
- reconstruct top quark and W boson as AK8 jets
- search for resonance in two dimensional (m_t, m_{tW}) plane

simulated b* event

- \blacksquare select events with 2 AK8 jets ($p_{
 m T}>$ 400 GeV)
 - \blacksquare one W-tagged AK8 jet \rightarrow W candidate
 - \blacksquare opposite AK8 jet \rightarrow top candidate
- **2**D likelihood fit of (m_t, m_{tW}) plane within [65, 285]GeV and [1200, 4000]GeV
- **•** sensitive to \mathbf{b}^* at $M_{\mathbf{b}^*} \geq 1.4 \,\mathrm{TeV}$
- smoothly falling non-resonant background
 - multijet scattering, W+jets
 - estimated from data
- resonant background
 - tt and single t
 - estimated from MC templates
 - constrained in control region

Results

limits on $m_{\mathbf{b}^*}$:

2.6 (LH), 2.8 (RH), and 3.1 (VL)

- $\rightarrow\,$ combination with $\ell+jets$ channel for best sensitivity
- $\rightarrow\,$ extend range down to $\,m_{\!\rm b}{}^*\,$ because of lower trigger thresholds

Analysis Strategy of $\ell{+}\mathsf{jets}$ channel

- top quark and W boson boosted due to high $m_{\rm b^*}$
- \blacksquare focus on final state with lepton, $\vec{p}_{\rm T}^{\rm miss}$ and merged top jet
- reconstruct top quark using top tagged HOTVR jet
- reconstruct W boson from lepton and $\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$
- \blacksquare search for heavy resonance in $m_{\rm tW}$ spectrum

simulated b* event

Top Tagging

- top quark decay products more collimated with higher p_T
- at large enough Lorentz boost:
 - reconstruction as single jet possible
 - identification of top jet via substructure

Top Tagging

top quark decay products more collimated with higher $p_{\rm T}$ at large enough Lorentz boost: p_{T} reconstruction as single jet high- p_{T} t \overline{t} event low- p_{T} t \overline{t} event possible identification of top jet via substructure Event 1 Event 2 clustered with HOTVR clustered with HOTVR Heavy Object Tagger with Variable R ¹ • adapts jet size to $p_{T,iet}$ using $R_{\text{eff}}(p_T) = \frac{\rho}{p_T}$ mass jump veto to suppress clustering of soft radiation and resolve substructure 3 3 1606.04961 1606 04961

¹T. Lapsien et al.: Eur. Phys. J. C 76, 600 (2016), arXiv: 1606.04961

Search for heavy resonances decaying to tW

Top Tagging Efficiency

- \blacksquare scan over N-Subjettines ratio τ_3/τ_2
- HOTVR covers wider range in $p_{\rm T}$ giving stable performance for low and high b^{*} masses
- signal efficiency ε_S:
 measured in b^{*} signal MC

- background efficiency ε_B :
 - measured in QCD multi-jet MC

- \blacksquare select events with isolated e/ $\mu,\ p_{\rm T}^{\rm miss}$ and t-tagged HOTVR jet
- $\scriptstyle \blacksquare$ extend signal sensitivity down to $\, m_{\rm b^{*}} \geq 0.7 \, {\rm TeV}$
- three categories based on number of b-tagged AK4 jets (0b, 1b, 2b)
- background with t quarks
 - tt and single t
 - estimated from MC templates
 - constrained in 2b category
- subdominant background with misidentified t jets
 - W/Z+jets, diboson
 - estimated from data in 0b category
- simultaneous binned likelihood fit 1b, 2b categories and all-hadronic channel

- subdominant background with misidentified top jets estimated from 0b control region
- \blacksquare calculate α ratio for non-top backgrounds

$$\alpha_i = \frac{N_{{\rm SR},i}}{N_{{\rm CR},i}}$$

transfer functions

- \blacksquare obtained from fit to α ratio
- different parametrizations considered
- systematic uncertainty estimated as difference between functions ⊕ statistical uncertainty

- simultaneous fit of all-hadronic and ℓ+jets distributions
- expected and observed upper cross section limits from combination
- unique limits in $m_{\rm tW}$ range [700,1400] GeV from ℓ +jets analysis
- comparable sensitivity above 1400 GeV
- mass exclusion limits:

Mass limits [TeV]						
	Median expected		Observed			
Chirality	$\ell+jets$	all-hadronic	combination			
LH	2.95	2.95	3.09	2.95		
RH	3.02	3.02	3.17	3.03		
VL	3.22	3.28	3.43	3.22		

Reinterpretation: Vector-like B' Quark

- production of heavy resonance via weak interaction
- production modes in association with b or t quark
- addition forward jet in final state

Reinterpretation: Vector-like B' Quark

Summary

Summary

- search for a heavy resonance decaying to tW
- statistical combination of all-hadronic and ℓ+jets channels
- no deviation from SM observed
- strongest limits on b^{*} to date
- reinterpretation in the context of VLQ B
- just submitted to JHEP

Search for heavy resonances decaying to tW