GEFÖRDERT VON

Bundesministe für Bildung und Forschung

Institute for Nuclear and Particle Physics - TU Dresden

Search for resonant WZ production with ATLAS detector at the LHC

Abhishek Nag

Physics at Terascale Meeting November 23-24, 2021

Overview

- Introduction
- <u>Resonance Search</u>
- <u>WZ Analysis search strategy</u>
 - Inclusive Selection
- <u>Signal regions</u>
- <u>Background estimation</u>
 - <u>Control regions</u>
- <u>Fit Strategy</u>
- <u>Results: Expected limits</u>
- <u>Summary</u>

Introduction: Standard Model

The Standard Model does not adequately explain:

- Gravity
- Dark Matter
- Dark energy
- Neutrino Masses
- Matter- antimatter asymmetry

Problems:

- Hierarchy problem → couldn't explain the low mass of Higgs
- CP violation → weak interactions violate not only the charge-conjugation symmetry C between particles and antiparticles and the P or parity, but also their combination.

Need beyond SM physics to explain such problems.

Resonance Search: Looking for a bump

- Resonance searches: the simplest way to discover new particles.
- Observe a statistically significant bump above a smooth background in the invariant mass distribution
- Model-independent probe to new physics.

Fig: Feynman diagram for X -> WZ process at the LHC

- Resonance benchmark:
 - Heavy vector Triplets (simplified Lagrangian) produced either by qqF or VBF
 - Georgi Machacek (GM) Higgs Triplet Model produced via VBF

WZ Resonance search analysis strategy

- We look into fully leptonic decay mode:
 - Small branching fractions Ο
 - Clean signature, low background Ο
 - Good sensitivity to low mass Ο
- Experimental signature:

direction

- 3 high p_{τ} isolated leptons Ο
- Missing transverse energy (E_{τ}^{miss}) Ο

high invariant mass of tagging jets m_{ii} . vector bosons between tagging jets

Two signal regions are defined targeting 2 production modes:

WZ inclusive Selection

Designed to select good W and Z pairs decaying leptonically

Signal Region definitions

- Starts from the inclusive WZ selection
- Events are defined into two \rightarrow qq fusion and vector boson fusion
- Two types of Signal regions under study:
 - 1. Cut based analysis:
 - qqF signal region:
 - $p_T^Z / m_{WZ}^Z > 0.35 \text{ and } p_T^W / m_{WZ}^Z > 0.35$

2. Artificial Neural Network VBF analysis:

- Deep Neural Network trained using events at the inclusive selection level + Mjj>100 GeV + Njet>=2
- Training aiming to discriminate VBF signals from SM backgrounds

0.12

0.06

0.04

- Set of variables used for the training:
 - $M_{ij}, \phi_{ij}, \eta_{W}, \eta_{Z}, \eta_{1}$, Event centrality, E_{T}^{miss}, H_{T}
- The same ANN training is applied to HVT VBF and GM signal
- ANN VBF signal region optimised with a cut on the DNN output (ANN > 0.82) for the two models

qqF: signal region yields (blinded)

Yields in signal region

	$q\bar{q}$ SR
WZ EWK	90.4 ± 3.5
WZ QCD	1984 ± 72
Fakes	92.3 ± 51.5
$VVV + t\bar{t}V$	147.2 ± 29.9
ZZ	87.2 ± 4.6
Total Background	2401 ± 88
Observed	XX

- Main backgrounds:
 - WZ EWK: estimated from MC
 - WZ QCD and ZZ: Normalization will be extracted from data in respective control regions
 - Fakes: Normalization from the data driven and shape from MC
 - VVV+ ttV background from MC checked in validation region

Data in the plot is Asimov Data

HVT VBF ANN: New signal region yields (blinded)

- Expected ~67 background events
- SM WZ QCD and EWK are the dominant background
 - WZ QCD and ZZ normalization will be extracted from data
 - WZ EWK has 6% uncertainty

	HVT VBF ANN SR
WZ EWK	25.11 ± 1.56
WZ QCD	36.51 ± 8.11
Fakes	0.245 ± 0.508
$VVV + t\bar{t}V$	0.818 ± 0.182
ZZ	4.56 ± 1.21
Total Background	67.24 ± 3.01
Observed	XX

Data in the plot is Asimov Data

GM VBF ANN: signal region yields (blinded)

- Same region as HVT ANN, but slightly different binning
 - due to difference in the mass resolution of the two models
 - Optimized by having around 10 background events in each bins and at the most 30% uncertainty in MC

	GM VBF ANN SR
WZ EWK	25.11 ± 1.56
WZ QCD	36.51 ± 8.11
Fakes	0.245 ± 0.508
$VVV + t\bar{t}V$	0.818 ± 0.182
ZZ	4.56 ± 1.22
Total Background	67.24 ± 3.00
Observed	XX

Data in the plot is Asimov Data

Background overview

1. SM WZ QCD background:

- Dominant background
- Shape are estimated from MC simulation
- Normalization fitted in dedicated control regions (orthogonal to SR)
 - i. WZ VBF ANN control region
 - **ii.** WZ $q\bar{q}$ control region
- 2. SM WZ EWK: estimated from MC simulation

3. Other Prompt background

- ZZ production: normalization fitted in corresponding 4 lepton control region (ZZCR).
- ttV background taken from MC checked in validation region
- Triple boson production: Modeled using theory

4. Fake/Non prompt background:

- Z+jets, Zy, Wy, ttbar, single top or WW \rightarrow where jets or photons were misidentified as leptons
- Normalization estimated using data, shape from MC

qqF: Control region yields

qqF Control region only fit

- Control region only fits also performed to extract normalization factors for WZ QCD and ZZ background
- Fitted factors are

<i>µwzqcd</i>	0.942 ± 0.047
HZZ	1.09 ± 0.05

Events / 50

h NuisPara GlobalFit conditionnal mu0

ANN: Control region yields

• SM WZ and ZZ are the dominant background in the SR

WZ QCD VBF control regions

- The WZ QCD background is the dominar one in the VBF ANN signal regions
- To constrain it, control regions are defined by:
 - Inverting the ANN SR requiremen
 - Applying Mjj> 500 GeV (included since most of SR events are expected to have high Mjj)

ZZ +2jets CR, defined by:

- 1 extra baseline lepton
- No E_T^{miss} cut
- 2 VBŚ jets

HVT MVA Control Region only fit

- Control region only fits are performed
- Fitted factors are

<i>µwzqcd</i>	0.726 ± 0.078
<i>µ</i> ZZJJ	1.07 ± 0.19

GM MVA Control Region only fit

- Same region as the HVT MVA CR
- Showing postfit distributions after CR only background fit
- Fitted factor slightly different due to

different binning

TECHNISCHE UNIVERSITÄT

DRESDEN

µwzqcd	0.725 ± 0.077
µ ZZJJ	1.06 ± 0.19

h_NuisPara_GlobalFit_conditionnal_mu0

INSTITUTE OF

NUCLEAR AND

PARTICLE PHYSICS

Fit Strategy

- Binning optimized considering
 - The signal resolution.
 - The Background Statistics: At least 5 expected background events in the last couple of bins
 - The Background Uncertainties: At the most 30% stat uncertainty in MC
- All theory and experimental uncertainties included
 - We have shape uncertainties comparing different MC for the main backgrounds (WZ EWK, WZ QCD and ZZ)
 - Cross section uncertainties for minor backgrounds
- Free parameters of the fit:
 - Normalization factor of WZ QCD
 - Normalization factor of ZZ
 - Signal normalization
- Simultaneous fit of SR and CRs

Limits Evolution: GM

GM ANN expected limits

HVT VBF ANN expected limits

INSTITUTE OF

NUCLEAR AND

PARTICLE PHYSICS

TECHNISCHE UNIVERSITÄT

DRESDEN

qqF expected limits

Take home message

- Resonances offer an easy way to look for new physics
- Leptonically decaying W and Z bosons give low statistics but cleaner signature
- Fully leptonic decay channel offer best limits for low mass resonances
- We see improvements with the expected full RunII limits
 - ANN improves the limits significantly

We are actively looking for physics beyond SM and there is room for **surprises**

GM Higgs Spectrum

Heavy Vector Triplets

- Parameterized Lagrangians incorporating heavy vector triplet (**HVT**) permit interpretation of searches for vector resonances.
- Simplified phenomenological Lagrangian used.
- Two benchmark models used:
 - **Model A**: heavy vectors emerging from an underlying weakly-coupled extensions of the SM gauge group ($g_v = 1$)
 - **Model B**: strongly coupled Composite Higgs scenario ($g_v = 3$)

Variables used for the ANN training

Parameter	Definition
M_{jj}	Invariant mass of two leading- p_T jets
$\Delta \phi_{jj}$	Difference in ϕ of the leading- $p_{\rm T}$ jets
η_W, η_Z	Pseudorapidities of the reconstructed gauge bosons
$\eta(j_1)$	Leading jet pseudorapidity
ζLep	Event centrality (defined in Eqn. 2)
$E_{\mathrm{T}}^{\mathrm{miss}}$	Missing transverse energy
\dot{H}_T	Scalar sum of the transverse momenta of visible objects (jets and leptons)

centrality = min { [min($\eta_{\ell_1}, \eta_{\ell_2}, \eta_{\ell_3}$) - min(η_{j_1}, η_{j_2})], [max(η_{j_1}, η_{j_2}) - max($\eta_{\ell_1}, \eta_{\ell_2}, \eta_{\ell_3}$)] }

Systematic Uncertainties

- Complete set of objects uncertainties included :
 - Electron systematics (important in qqF)
 - Muon systematics (important in qqF)
 - Missing Et systematics
 - PRW systematics (important in qqF and VBF fits)
 - Jet systematics (using R4_SR_Scenario1_SimpleJER \rightarrow will update to GlobalReduction_SimpleJER)
 - Flavor tagging systematics
 - Matrix method systematics
- Shapes are smoothed in resonance finder for the fit

electron sy	stematics
-------------	-----------

EG_RESOLUTION_ALL	0.0107
EG_SCALE_AF2	0.0000
EG_SCALE_ALL	0.1790
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR	1.0346
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR	0.1329
EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR	0.1762

missing Et systematics

MET_SoftTrk_ResoPara	0.36243%
MET_SoftTrk_ResoPerp	0.29816%
MET_SoftTrk_ScaleDown	0.36701%

PRW systematics

PRW_DATASF 1.48271%

		muon systematics	
	0.01074%	MUON_EFF_ISO_STAT	0.03322%
	0.00000%	MUON_EFF_ISO_SYS	0.42996%
	0.17909%	MUON_EFF_RECO_STAT	0.14751%
	1.03462%	MUON_EFF_RECO_STAT_LOWPT	0.00000%
	0.13293%	MUON_EFF_RECO_SYS	0.56604%
2	0.17624%	MUON_EFF_RECO_SYS_LOWPT	0.00000%
		MUON_EFF_TTVA_STAT	0.04483%
		MUON_EFF_TTVA_SYS	0.05624%
		MUON_ID	0.02327%
		MUON_MS	0.01655%
		MUON_SAGITTA_RESBIAS	0.00642%
		MUON_SAGITTA_RHO	0.00662%

MUON SCALE

jet systematics

0.24776%

JET_EtaIntercalibration_NonClosure_highE	0.00001%
JET_EtaIntercalibration_NonClosure_negEta	0.00631%
JET_EtaIntercalibration_NonClosure_posEta	0.00319%
JET_Flavor_Response	0.13921%
JET_GroupedNP_1	0.23703%
JET_GroupedNP_2	0.22260%
JET_GroupedNP_3	0.01573%
JET_JER_EffectiveNP_1	0.00001%
JET_JER_EffectiveNP_2	0.00000%
JET_JER_EffectiveNP_3	0.00001%
JET_JER_EffectiveNP_4	0.00000%
JET_JER_EffectiveNP_5	0.00000%
JET_JER_EffectiveNP_6	0.00000%
JET_JER_EffectiveNP_7restTerm	0.00001%
JET_JvtEfficiency	0.07487%
JET_fJvtEfficiency	0.31240%

(results here are at the level of the $\mathscr{U} Z$ inclusive Validation region)

flavor tagging systematics

FT_EFF_Eigen_B_0	0.02674%
FT_EFF_Eigen_B_1	0.00604%
FT_EFF_Eigen_B_2	0.00434%
FT_EFF_Eigen_B_3	0.00158%
FT_EFF_Eigen_B_4	0.00014%
FT_EFF_Eigen_B_5	0.00002%
FT_EFF_Eigen_B_6	0.00002%
FT_EFF_Eigen_B_7	0.00000%
FT_EFF_Eigen_B_8	0.00000%
FT_EFF_Eigen_C_0	0.04878%
FT_EFF_Eigen_C_1	0.00381%
FT_EFF_Eigen_C_2	0.00318%
FT_EFF_Eigen_C_3	0.00048%
FT_EFF_Eigen_Light_0	0.04676%
FT_EFF_Eigen_Light_1	0.00179%
FT_EFF_Eigen_Light_2	0.00492%
FT_EFF_Eigen_Light_3	0.00036%
FT_EFF_extrapolation	0.00336%
FT_EFF_extrapolation_from_charm	0.01013%

