Search for heavy resonances in four-top-quark final states in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

14th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"

Philipp Gadow (DESY) | 23.11.2021

Motivation

- The large Yukawa coupling of the top quark to the Higgs boson motivates various top-quark-based resonance searches.
- Many theories for Beyond-Standard-Model phenomena (e.g. composite Higgs models) predict vector resonances coupling more strongly to top quarks than to the light quarks.
- Typical resonance searches with top quarks target resonances produced in qq annihilation. Top-philic resonances require associated ttZ' production leading to four-top-quark final states.

First search for heavy resonances in four-top-quark final states of its kind at the LHC, motivated by recent evidence for SM four-top-quark production.

Phys.Rev.D 94 (2016) 3, 035023

Benchmark signal model

$$\mathcal{L}_{int} = \bar{t} \gamma_{\mu} (c_L P_L + c_R P_R) t V_1^{\mu} = c_t \bar{t} \gamma_{\mu} (\cos \theta P_L + \sin \theta P_R) t V_1^{\mu},$$

where $P_{R/L} = (1 \pm \gamma_5)/2$, $c_t = \sqrt{(c_L)^2 + (c_R)^2}$ and $\tan \theta = \frac{c_R}{c_L}$ are the projection operators, coupling of the vector singlet with the top quarks and tangent of the chirality angle respectively.

- bottom-up approach: minimal extension of Standard Model particle content
 - consequentially, focus on tree-level processes
- free signal parameters
 - resonance mass: m_z = [1 TeV, 1.25 TeV, 1.5 TeV, 2 TeV, 2.5 TeV, 3 TeV]
 - coupling to top quarks: consider $c_t = 1$ (corresponds to 4% relative width)
 - chirality parameter: $\theta = \pi/4$ (ttZ' production insensitive to θ)

Event selection

1 lepton channel

- 1 lepton with p_T > 28 GeV, no additional leptons
- ≥ 2 reclustered (RC) R=1.0 jets with p_T > 300 GeV, m > 100 GeV and 2 or more constituents
- ≥ 2 R=0.4 PFlow jets outside of the RC jets ("additional jets")
- ≥ 2 b-tagged PFlow jets (DL1r using 77% efficiency WP)

Analysis strategy

1/3

- Main discriminant: invariant mass of top quark candidate RC jets m_{JJ}
- Signal distributions peak above smoothly falling background
- Mass resolution affected by:
 - natural width of resonance
 - inefficiencies in using large-radius jets to capture full top quark decay
 - semi-leptonic decays of top quarks originating from Z' boson decay

Analysis strategy

Fraction of events

Region definition based on number of additional jets and number of b-jets to enhance sensitivity:

- Signal regions with large signal contribution used for search
- Source region used for data-driven background estimate

6

Analysis strategy

Region definition based on number of additional jets and number of b-jets also foundational for data-based background estimate.

Background prediction B^{reg} in signal region from functional form fit to source region data and MC-based extrapolation functions $C^{source \rightarrow reg}$

$$B^{\operatorname{reg}}(m_{t\bar{t},i}) = f(m_{t\bar{t},i}) \times C^{\operatorname{source} \to \operatorname{reg}}(m_{t\bar{t},i})$$

background prediction for bin i of mtt distribution

Background estimate

Background prediction B^{reg} in signal region from functional form fit to source region data and MC-based extrapolation functions $C^{source \rightarrow reg}$

8

Systematic uncertainties

Uncertainty categories	Relative contribution to the total uncertainty [%]		
	1.5 TeV	3 TeV	
$t\bar{t}$ +jets modeling	68	50	
Signal bias	45	25	
Functional fit and extrapolation	34	33	
Jet energy scale and resolution	29	18	
Single-top-quark modeling	9.4	7.7	
Flavor tagging	8.7	3.6	
Minor backgrounds modeling	5.1	5.6	
Other uncertainties	0.4	2.0	
Luminosity	0.3	0.1	
Total systematic uncertainty	92	74	
Statistical uncertainty	39	67	

Largest impact on total uncertainty:

- tt+jets modelling
- uncertainties related to background estimate (spurious signal bias and functional form fit)
- jet-related uncertainties

ATLAS-CONF-2021-048

(see additional material for more details)

Search approach with minimal model dependence: combined bkg-only profile likelihood fit of all signal regions to data. Post-fit distributions in good agreement with data, no significant deviations flagged by BumpHunter algorithm.

Interpretation

Model-dependent interpretation in terms of simplified top-philic resonance model:

- observed 95% CL upper limit on ttZ' production cross-section for narrow width (Γ/m ≈ 4%) resonance
- LO theory cross-section prediction for resonance-top-quark coupling ct = 1

Summary

- A search for heavy top-philic resonances in the four-top-quark final state is presented. In contrast to existing four-top-quark searches, a resonance is explicitly reconstructed using reclustered large-radius jets.
- The background is estimated using a data-driven method to mitigate MC mismodelling in the high jet multiplicity regime.
- Results are interpreted using both a BumpHunter method with minimal model dependence and a model-dependent approach.
- No excess was found in data, limits were set on a simplified model for production of top-philic spin-1 Z' resonances as a function of mass m_{Z'} for a relative width of Γ/m ≈ 4%.

Additional material

MC Simulation of background processes

Process	Generator +	Tune	PDF set	Cross-section
	fragmentation/hadronisation			order
tī	Powheg Box v2 + Pythia 8.230	A14	NNPDF3.0	NNLO+NNLL
W+ jets	Sherpa 2.2.1	Default	NNPDF3.0	NNLO
Wt-single-top	Powheg Box v2 + Pythia 8.230	A14	NNPDF3.0	NNLO+NNLL
Z + jets	Sherpa 2.2.1	Default	NNPDF3.0	NNLO
<i>s/t</i> -single-top	Powheg Box v2 + Pythia 8.230	A14	NNPDF3.0	NNLO+NNLL
Dibosons	Sherpa 2.2.1/2.2.2	Default	NNPDF3.0	NLO
$t\bar{t} + W/Z$	AMC@NLO 2.3.3 + Pythia 8.210	Default	NNPDF2.3	NLO
$t\bar{t}$ +H	Powheg Box v2 + Pythia 8.230	A14	NNPDF3.0	NLO
tī tī	AMC@NLO 2.6.2 + Pythia 8.230	A14	NNPDF3.1	NLO
tΖ	AMC@NLO 2.3.3 + Pythia 8.212	A14	NNPDF3.0	LO

What is BumpHunter?

Run BumpHunter algorithm on background prediction after conditional μ =0 profile likelihood fit to obtain model-agnostic results.

BumpHunter: locates the most significant local deviations from the bkg-only null hypothesis H_0 , provides a p-value accounting for trials factor which corresponds to the Type I error probability

- 1. generate large number of pseudo-data following $\overset{ener}{H_0}$ and for each dataset
- 2. compute BumpHunter test statistic
 - scan with sliding window and report test statistic
 t = -log p-value_{min} based on window with smallest p-value
- 3. calculate p-value of the test based on observed data and *t*-distribution of pseudo-experiment

