Reconciling Higgs physics and pseudo-Nambu-Goldstone dark matter in the S2HDM using a genetic algorithm [2108.10864]

Thomas Biekötter

in collaboration with María Olalla Olea Romacho

14th Annual Workshop on "Physics at the Terascale" Helmholtz Alliance

November 24th 2021

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Higgs portal dark matter

Can we have one without the other?

Pseudo-Nambu-Goldstone dark matter (pNG)

- S: Complex field charged under a softly-broken global U(1) $\mathcal{L} = (\partial_{\mu}S)^{*} \partial^{\mu}S - V(\phi_{i}, S)|_{U(1)} - V(S)|_{\mathcal{U}(1)-\text{soft}}$ $S = \frac{1}{\sqrt{2}} (v_{s} + s) e^{i\frac{\chi}{v_{s}}} \quad \Rightarrow \quad \mathcal{L}_{\chi\chi s} = \frac{1}{2v_{s}} (\partial^{2}s) \chi\chi - \frac{s}{v_{s}} \chi (\partial^{2} + m_{\chi}^{2}) \chi$ [2109.11499]
- On-shell χ interactions with Higgs sector proportional to momentum of s

Direct detection constraints largely irrelevant

Pseudo-Nambu-Goldstone dark matter (pNG)

Most studied case: $V = V_{SM}(H) + V(H,S)|_{U(1)} + \mu_{\chi} \left(S^2 + (S^*)^2\right)$

 $[0811.0393],\ [1609.07490],\ [1708.02253],\ [1812.05952],\ [1810.06105],\ [1810.08139],\ [1912.04008],\ [1906.02175],\ \ldots$

- Predict DM relic abundance :)
- DM constrants: ID important, almost no sensitivity with DD
- Collider: h_{125} –s mixing, $E_{T_{\text{missing}}}$ signatures

Here:
$$V = V_{2\text{HDM-II}}(\phi_1, \phi_2) + V(\phi_1, \phi_2, \phi_S)|_{U(1)} + \mu_{\chi} \left(\phi_S^2 + (\phi_S^*)^2\right)$$

[2108.10864]

- 2HDM: First-order EW phase transitions, Susy, Axion models
- DM: Richer DM-Higgs portal interactions
- Collider: Richer mixing patterns and new states

Aim: Model exploration taking into account all constraints

We explore parameter region motivated by (i) Cosmic ray excesses (Fermi and AMS) (ii) collider excesses at 96 GeV

S2HDM: Singlet-extended 2 Higgs doublet model

 ϕ_1 , ϕ_2 : SU(2) doublets, ϕ_5 : SM singlet, charged under global U(1)

Scalar potential:

$$V = V_{2\text{HDM-II}}(\phi_1, \phi_2) + V(\phi_1, \phi_2, \phi_5)|_{U(1)} + \mu_{\chi} \left(\phi_5^2 + (\phi_5^*)^2\right)$$

EW vacuum:

$$\langle \phi_1 \rangle = \begin{pmatrix} 0 \\ v_1/\sqrt{2} \end{pmatrix}$$
, $\langle \phi_2 \rangle = \begin{pmatrix} 0 \\ v_2/\sqrt{2} \end{pmatrix}$, $\langle \phi_S \rangle = v_S/\sqrt{2} \in \mathbb{R}$

BSM particles:

Free parameters (Yukawa type II):

 $m_{h_{1,2,3}}$, m_A , $m_{H^{\pm}}$, m_{χ} , $\alpha_{1,2,3}$, $\tan \beta = v_1/v_2$, $M = \sqrt{\mu_{12}^2/(s_\beta c_\beta)}$, $v_S = \mu_{12}^2$: Soft Z₂-breaking parameter

Theoretical and experimental constraints

Theory:

Vacuum stability: EW minimum is global minimum (strict) [Hom4PS2] Perturbativity: Upper limit on scalar $2 \rightarrow 2$ scattering amplitudes in large *s* limit $\rightarrow |\text{Eig}[\mathcal{M}(\lambda_i)]| < 8\pi$

RGE evolution: Check for boundedness and perturbativity until at least $\mu_{
m v}=1~{
m TeV}$

Experiment:

Colliders: Searches, measurements of h_{125} [N2HDECAY, HiggsBounds, HiggsSignals] STU: EW precision observables (at one loop) Flavour: $\tan \beta > 1.5$ and $m_{H^{\pm}} > 600$ GeV to avoid bounds (type II) Dark matter: Relic abundance $h^2\Omega < 0.12$ [Micromegas]

Indirect detection limits from Fermi dSph observations [MadDM]

s2hdmTools

👿 s2hdmTools	٩		OitLab ☆1 ♥0
s2hdmTools Home API Example About	Welcome to s2hdmTools	i	Table of contents Citation guide External software
	This is the documentation of the package ${\tt s2hdmTools}$, a tool for the exploration of the S2HDM.	e for the phenomenological	Installation User instructions Issues
	Citation guide		
	If you use this software for a scientific publication, we kindly ask you to cite our paper:		
	 arXiv:2108.10864: Thomas Biekoetter, Maria Olalla Olea, Reconciling Higgs physics and pseudo-Nambu-Goldstone dark matter in the S2HDM using a genetic algorithm, J. High Energ, Phys. 2021, 215 (2021) 		
	External software		
	s2hdmTopls makes use of external software to perform some of the computations. Please also cite the relevant publications for the following software if it is relevant for your work:		
	Vacuum stability: Hom4PS2		
	Collider constraints: AnyHdecay, HiggsBounds, HiggsSignals		
	Dark-matter constraints: MicrOmegas, MadDM		
	Installation		
	s2hdmTools can be installed by typing the following command from within the main directory:		
	make all PC2=/home//python2 F2PC2=/home//f2py2		
	The makefile uses $_{\mbox{pip}}$ to install the package to your python environm	ment.	

https://gitlab.com/thomas.biekoetter/s2hdmtools/

Parameter Scan

S2HDM Type II:

$$\begin{array}{ll} 1.5 \leq \tan\beta \leq 10 \ , & m_{h_1} = 125.09 \ {\rm GeV} \ , & 140 \ {\rm GeV} \leq m_{h_{2,3}} \leq 1 \ {\rm TeV} \ , \\ 40 \ {\rm GeV} \leq m_\chi \leq 80 \ {\rm GeV} \ , & 40 \ {\rm GeV} \leq v_S \leq 1 \ {\rm TeV} \ , & -\pi/2 \leq \alpha_{1,2,3} \leq \pi/2 \ , \\ 400 \ {\rm GeV} \leq M \leq 1 \ {\rm TeV} \ , & 600 \ {\rm GeV} \leq m_{H^\pm} \leq 1 \ {\rm TeV} \ , & m_A \leq 1 \ {\rm TeV} \ , \\ \Delta M_{\rm max} = \max \left(|m_H - M|, |m_A - M|, |m_{H^\pm} - M| \right) < 200 \ {\rm GeV} \ , \\ & {\rm with} \ m_H = m_{h_2}(m_{h_3}) \ {\rm for} \ \Sigma_{h_2} > (<) \Sigma_{h_3} \end{array}$$

Second scan:
$$m_{h_1} = 96 \text{ GeV}$$
, $m_{h_2} = 125 \text{ GeV}$

Genetic algorithm:* Minimizing the loss function L

$$L_{1,2} = \chi^2_{125}(+\chi^2_{96}) + \max\left[0, (r^{\rm HB}_{\rm obs} - 1) \cdot 100\right] + \begin{cases} C \ , \ \chi^2_{ST} > 5.99 \ \text{or theo. constr. 4} \\ 0 \ , \ \text{otherwise} \end{cases}$$

 \Rightarrow Points that fulfill theory constraints at $\mu=\nu_{\rm EW}$ and are allowed by collider measurements

 \rightarrow Check theory constraints including RGE evolution \rightarrow Calculate DM observables

*Details appendix/questions

Theoretical constraints: Impact of RGE running

A First-order EW phase transitions (baryogenesis and GW) require sizable mass splittings

Scalar spectrum

Most common:

 $m_H \sim m_A \sim m_{H^\pm} \sim M \gtrsim 500 {
m ~GeV}$ $m_{h_i} \lesssim v_S$ for $\Sigma_{h_i} \sim 1$

- \rightarrow Higgs cascade decays
- \rightarrow SM decay modes of H, A, H^{\pm} can be suppressed w.r.t. 2HDM
- \rightarrow Spectrum can be somewhat lighter

DM: Here $M \gg m_{\chi}$

 \rightarrow Annihilation via $h_{1,2} = h_{125,S}$

SM-like Higgs boson at 125 $\,\mathrm{GeV}$

 $h_1 = h_{125}$

$$\label{eq:max} \begin{split} \text{max}(\Sigma_{h_1}) \sim 0.14 \text{ (in SM+S model} \sim 0.07) \\ \text{Possibility to distinguish the models} \end{split}$$

 $m_\chi\gtrsim$ 54 GeV (similar to SM+S limit) But depends on $m_{h_S}>m_{h_{125}}$

- 1. Both excesses are compatible
- 2. They require annihilation XS of the order of the thermal relic XS
- 3. Both consistent with $bar{b}$ annihilation ightarrow Higgs portal DM
- 4. Currently probed by observation of dSph

Exciting :)

Thermal DM relics in the Higgs funnel region

"The 96GeV excesses" (LEP and CMS)

 $ightarrow \chi^2_{96}(\mu_{
m LEP},\mu_{
m CMS})$ assuming no correlation between $\mu_{
m LEP}$ and $\mu_{
m CMS}$

Many model interpretations with common origin of both excesses, including N2HDM and NMSSM see [2003.05422] for a list models

Higgs funnel DM and a Higgs boson at 96 ${ m GeV}$

Scan: As before, but with $m_{h_1} = 96 \text{ GeV}$ and $m_{h_2} = 125 \text{ GeV}$

Very interesting region at 62 GeV $\lesssim m_\chi \lesssim$ 65 GeV:

✓ Relic abundance ✓ Fermi γ excess ✓ AMS p̄ excess ✓ CMS excess ✓ LEP excess
 (✗) In tension with dSph exclusion limits (but there are large uncertainties)

Conclusion

Summary and outlook

- The S2HDM is theoretically well motivated and has a rich Higgs and DM phenomenology
- We demonstrated that important (theoretical) constraints have been overlooked so far
- We provide the public code s2hdmTools for model explorations

In the Higgs funnel region recent experimental anomalies can be explained:

✓ Relic abundance ✓ Fermi γ excess ✓ AMS p̄ excess ✓ CMS excess ✓ LEP excess
 (✗) In tension with dSph exclusion limits (but there are large uncertainties)

THANKS FOR YOUR ATTENTION!

Assuming $\Omega h^2 = \Omega h_{\mathrm{Planck}}^2$ – Non-standard cosmological history

$$m_{h_1} = 125 \text{ GeV} , m_{h_2} > 140 \text{ GeV}$$

60 65 70 75

 m_{χ} [GeV]

 10^{-31}

40 45

50

$$m_{h_1} = 96 \,\, {
m GeV} \,\,, \,\, m_{h_2} = 125 \,\, {
m GeV}$$

Higgs funnel DM and a Higgs boson at 96 ${\rm GeV}$

Higgs funnel DM and a Higgs boson at 96 ${\rm GeV}$

Parameter Scan

S2HDM Type II:

$$\begin{split} 1.5 &\leq \tan\beta \leq 10 \;, \quad m_{h_1} = 125.09 \; \text{GeV} \;, \quad 140 \; \text{GeV} \leq m_{h_{2,3}} \leq 1 \; \text{TeV} \;, \\ 40 \; \text{GeV} &\leq m_\chi \leq 80 \; \text{GeV} \;, \quad 40 \; \text{GeV} \leq v_5 \leq 1 \; \text{TeV} \;, \quad -\pi/2 \leq \alpha_{1,2,3} \leq \pi/2 \;, \\ 400 \; \text{GeV} \leq M \leq 1 \; \text{TeV} \;, \quad 600 \; \text{GeV} \leq m_{H^\pm} \leq 1 \; \text{TeV} \;, \quad m_A \leq 1 \; \text{TeV} \;, \\ \Delta M_{\text{max}} &= \max \left(|m_H - M|, |m_A - M|, |m_{H^\pm} - M| \right) < 200 \; \text{GeV} \;, \; m_H = m_{h_2} \; \text{or} \; m_{h_3} \end{split}$$

Genetic algorithm: Minimizing the loss function L

$$L = \chi^{2}_{125}(+\chi^{2}_{96}) + \max\left[0, (r^{\rm HB}_{\rm obs} - 1) \cdot 100\right] + \begin{cases} C \ , \ \chi^{2}_{5T} > 5.99 \ \text{or theo. constr. } 2 \\ 0 \ , \ \text{otherwise} \end{cases}$$

Individuals: $[n_1, n_2, ..., n_{14}]$, $0 < n_i < 1 \Rightarrow \tan \beta(n_i)$, $m_{h_i}(n_i)$, ...

Population: 50 000 individuals, randomly generated

Evolution: Selection: Tournament selection with size 3

Mating: Uniform crossover of 2 individuals with p = 20%, mating probability 80% Mutation: Float uniform mutator with p = 10%, mutation probability 20% Generations: Maximum 40, or until individual with $L \leq L_{\rm threshold}$ has been found

 \rightarrow For the resulting points calculate DM observables

Performance of genetic algorithm

S2HDM: Singlet-extended 2 Higgs doublet model

 ϕ_1, ϕ_2 : SU(2) doublets, ϕ_5 : SM singlet, charged under global U(1)

Scalar potential:

$$\begin{split} V &= \mu_{11}^2 \left(\phi_1^{\dagger} \phi_1 \right) + \mu_{22}^2 \left(\phi_2^{\dagger} \phi_2 \right) - \mu_{12}^2 \left(\left(\phi_1^{\dagger} \phi_2 \right) + \left(\phi_2^{\dagger} \phi_1 \right) \right) + \frac{1}{2} \mu_S^2 \left| \phi_S \right|^2 - \frac{1}{4} \mu_\chi^2 \left(\phi_S^2 + \left(\phi_S^* \right)^2 \right) \\ &+ \frac{1}{2} \lambda_1 \left(\phi_1^{\dagger} \phi_1 \right)^2 + \frac{1}{2} \lambda_2 \left(\phi_2^{\dagger} \phi_2 \right)^2 + \lambda_3 \left(\phi_1^{\dagger} \phi_1 \right) \left(\phi_2^{\dagger} \phi_2 \right) + \lambda_4 \left(\phi_1^{\dagger} \phi_2 \right) \left(\phi_2^{\dagger} \phi_1 \right) \\ &+ \frac{1}{2} \lambda_5 \left(\left(\phi_1^{\dagger} \phi_2 \right)^2 + \left(\phi_2^{\dagger} \phi_1 \right)^2 \right) + \frac{1}{2} \lambda_6 \left(\left| \phi_S \right|^2 \right)^2 + \lambda_7 \left(\phi_1^{\dagger} \phi_1 \right) \left| \phi_S \right|^2 + \lambda_8 \left(\phi_2^{\dagger} \phi_2 \right) \left| \phi_S \right|^2 \end{split}$$

EW vacuum:
$$\langle \phi_1 \rangle = \begin{pmatrix} 0 \\ v_1/\sqrt{2} \end{pmatrix}$$
, $\langle \phi_2 \rangle = \begin{pmatrix} 0 \\ v_2/\sqrt{2} \end{pmatrix}$, $\langle \phi_5 \rangle = v_5/\sqrt{2} \in \mathbb{R}$
BSM particles:

 $h_{1,2,3}$: CP-even Higgs bosons $\begin{pmatrix} h_1 \\ h_2 \\ h_2 \end{pmatrix} = R(\alpha_1, \alpha_2, \alpha_3) \cdot \begin{pmatrix} \operatorname{Re}(\phi_1^0) \\ \operatorname{Re}(\phi_2^0) \\ \operatorname{Re}(\phi_1^0) \end{pmatrix}$ H^{\pm} : Charged Higgs bosons A: CP-odd Higgs boson χ : pNG DM

Free parameters (Yukawa type II):

 $m_{h_{1,2,3}}$, m_A , $m_{H^{\pm}}$, m_{χ} , $\alpha_{1,2,3}$, $\tan \beta$, $M = \sqrt{\mu_{12}^2 / (s_\beta c_\beta)}$, Vs