Prospects for $\tilde{\tau}$ searches and measurements at the ILC

Teresa Núñez - DESY

- SUSY and SUSY searches
- Motivation of *t* studies
- Limits at LHC and LEP
- $\tilde{\tau}$ searches at the ILC
- Prospects for $\tilde{\tau}$ measurements at the ILC
- Outlook and conclusions

Physics at the Terascale, 23-11-21

QUANTUM UNIVERSE

One of the promising candidates for new Physics

Symmetry of spacetime relating fermions and bosons

Considerable effort searching for SUSY at LHC and LEP

- Mainly sensitive to production of coloured particles, most probably the heaviest ones
 - Limits only valid if many dependencies between the model parameters are full filled
- High sensitivity for production of colour-neutral states, but limited by the energy
- Limits are valid for any value of the model parameters not shown in the exclusion plots

Not evidence of SUSY up to now, exclusion/discovery limits set

Supersymmetry at ILC

ILC ideal environment for SUSY studies

- Electron-Positron collider at $\sqrt{s} = 250-500$ GeV with energy upgradability (1TeV)
- Electrons (+/- 80%) and positrons (+/- 30%) polarisations
- Well defined initial state: 4-Momentum and spin configuration
- Clean and reconstructable final state (near absence of pile-up)
- Hermetic detectors (almost 4π coverage)

Triggerless operation -> huge advantage for precision measurements and unexpected signatures

Motivation for $\tilde{\tau}$ searches

Searching SUSY focused on best motivated NLSP candidates and most difficult scenarios

$\widetilde{ au}$ satisfies both conditions

Scalar superpartner of τ -lepton

- Two weak hypercharge eigenstates ($\tilde{\tau}_{R}, \tilde{\tau}_{L}$) not mass degenerate
- Mixing yields to the physical states ($\tilde{\tau}_1$, $\tilde{\tau}_2$), the lightest one being with high probability the lightest sfermion (stronger trilinear couplings)
- With assumed R-parity conservation:
 - pair produced (s-channel via Z⁰/ γ exchange, lowest σ with no coupling to Z⁰)
 - decay to LSP and τ , implying more difficult signal identification than the other sfermions

SUSY models with a light $\tilde{\tau}$ can accommodate the observed relic density ($\tilde{\tau}$ - neutralino coannihilation)

Limits at LHC and LEP

$\tilde{\tau}$ searches at LEP

Valid for any mixing and any values of the not shown parameters

DESY.

Limits at LHC and LEP

$\tilde{\tau}$ prospects at HL-LHC

ATL-PHYS-PUB-2018-048

No discovery potential for $\tilde{\tau}$ coannihilation scenarios or $\tilde{\tau}_R$ pair production

Expected gain in sensitivity to direct $\tilde{\tau}$ production

- Two models: $\tilde{\tau}_R$ and $\tilde{\tau}_L$
- No mixing
- Two $\tilde{\tau}$ assumed to be massdegenerate
- No mixing

ILC Study: conditions and tools

$\tilde{\tau}$ searches in worst scenario using SGV fast simulation

- Mixing angle set to 53 degrees (lowest cross sections)
- Focused on small mass differences ($\Delta M < 11 \text{ GeV}$)
- Cross-check larger mass differences

ILC experimental conditions

- Polarization P(e⁻,e⁺)=(+80%,-30%)
- $\sqrt{s} = 500 \text{ GeV}$ with 1.6 ab⁻¹ integrated luminosity (H-20, I-20 ILC500)

Event reconstruction using SGV adapted to the ILD detector concept at ILC

• Signal: Phytia 6.422

HEI

- Background: Whizard 1.95 (standard "DBD" background samples)
- No signal in the calorimeter closest to the beam pipe (the BeamCal)

Previous preliminary study

Signal characterization

Signal characterization (ctd.)

Signature:

- large missing energy and momentum
- high acollinearity, with little correlation to the energy of the decay products
- large fraction of detected activity in central detector (isotropic production of scalar particles)
- unbalanced transverse momentum
- no forward-backward asymmetry

SM processes with real or fake missing energy

Irreducible

4-fermion production with two of the fermions being neutrinos and two leptons

• *ZZ* -> *vv ττ*, *WW* -> *vτ vτ*

Almost irreducible

- ee -> ττ, ZZ -> vv ll, WW -> lv lv (l = e or μ)
- $ee \rightarrow \tau\tau + ISR$, $ee \rightarrow \tau\tau ee$, $\gamma\gamma \rightarrow \tau\tau$

Mis-identification of τ 's or of missing momentum

General cuts

Properties $\widetilde{\tau}$ -events "must" have

Maximum jet momentum:

- Missing energy (E_{miss}). E_{miss} > 2 x M_{LSP} GeV
- Visible mass (m_{vis}). $m_{vis} < 2 \text{ x} (M_{\tilde{\tau}} M_{LSP}) \text{ GeV}$
- Momentum of all jets (p_{jet}). p_{jet} < 70% Beam Momentum (or M_{τ̃}/M_{LSP} dependent)
- Two well identified τ 's and little other activity

Above 95 % signal efficiency for each of these cuts (excluding for the τ -identification)

$$P_{max} = \frac{\sqrt{s}}{4} (1 - (\text{MLSP} / M_{\tilde{\tau}})^2) (1 + \sqrt{1 - \frac{4M\tilde{\tau}^2}{s}})$$

GEMEINSCHAFT

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

General cuts (ctd.)

Properties $\widetilde{\tau}$ -events "might" have, but background "rarely" has

- Missing transverse momentum
- Large acoplanarity
- Large transverse momentum wrt. thrust-axis
- High angles to beam

Cuts against properties of irreducible sources of background

- Charge asymmetry (Σcharge * cos(polar_angle))
- Difference between visible mass and Z mass

Properties that the background often "does not" have

- Low energy in small angles
- Low energy of isolated neutral clusters
 GEMEINSCHAFT

General cuts (ctd.)

13

ILC expected limits

At ILC discovery and exclusion are almost the same

Search for "worst" mixing angle

53 degrees $\tilde{\tau}$ mixing angle corresponds to the worst case for (unpolarized) LEP conditions

Use ILC conditions weighting contribution of both polarisations

Take into account effect of mixing in cross-section and signal efficiency

- Signal: Whizard + Tauola
- Background: Whizard 1.95 (standard "DBD" background samples)

Event reconstruction using SGV adapted to the ILD detector concept at ILC

Dependence of signal efficiency on $\tilde{\tau}$ mixing

Bino LSP, $m_x = 200 \text{ GeV}, \Delta m = 100 \text{ GeV}$

- Signal efficiency depends on spectrum of detectable τ decays
- Spectrum of τ decay products depends on τ polarisation
- τ polarisation depends on $\tilde{\tau}$ and LSP mixing angles

Higgsino changes chirality but Bino does not

Dependence of signal efficiency on $\tilde{\tau}$ mixing

Selected background and signal events

Likelihood-ratio statistic used to weight both polarisations

Prospects for $\tilde{\tau}$ measurements at the ILC

Evaluate precision on $\tilde{\tau}$ properties measurements

- Two specific models, STCx and SPS1a, evaluated:
 - $\tilde{\boldsymbol{\tau}}_1$ NLSP, with ΔM < 10 GeV
 - $\tilde{\tau}_1$ and $\tilde{\tau}_2$, as well as other sfermions and lighter bosinos, can be produced at 500 GeV
 - excluded by LHC but not due to the $\tilde{\tau}$ sector
- Beam energy 500 GeV and integrated luminosity of 500 fb⁻¹ per beam polarization (expected one 1600 fb⁻¹)
 - $\tilde{\boldsymbol{\tau}}_1$ and $\tilde{\boldsymbol{\tau}}_2$ masses from spectrum end-points and cross sections
 - Cross sections
 - τ polarisation and $\tilde{\tau}$ mixing angle

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

20

EPJC, 76(4),1 (2016)

Phys Rev, D82,055016 (2010)

$\tilde{\tau}$ masses fitting end-points

$M_{\tilde{\tau}}$ from M_{LSP} and end-point of spectrum

Only upper-end is relevant

Must get M_{LSP} from other sources (ex. smuon, selectron end-points)

$\tilde{\tau}$ masses fitting end-points

$M_{\tilde{\tau}}$ from M_{LSP} and end-point of spectrum

Must get M_{LSP} from other sources (ex. smuon, selectron end-points)

$\tilde{\tau}$ masses from cross-sections

Evaluate cross-sections from regions with lower SUSY background (unknown)

No dependence on M_{LSP}

$\tilde{\tau}$ masses from cross-sections

Evaluate cross-sections from regions with lower SUSY background (unknown)

No dependence on M_{LSP}

au polarisation measurements

au polarisation depends on $ilde{ au}$ and LSP mixing angles

Study spectrum of $\tau \rightarrow \pi \nu$ and $\tau \rightarrow \nu \rho$ for P=1, 0 or -1

HELMHOI GEMEINS Per cent-level polarisation-measurements will be possible at the ILC

$\tilde{\tau}$ mixing angle measurements

Cross-section depends on $\tilde{\tau}$ mixing angle and mass

$$\sigma_{\tilde{\tau}} = A(\theta \tilde{\tau}, P_{beam}) \ge \beta^3 / s$$

$$\beta^3 = (1 - 4\mathsf{M}\tilde{\tau}^2)^{3/2}$$

- With known M $\tilde{\tau}$, only dependence on $\theta \tilde{\tau}$
- Cross-section difference for RL and LR beams

Outlook/Conclusions

- Exclusion and discovery limits for $\tilde{\tau}$ pair production at the ILC have been computed
- No dependence on hidden SUSY parameters have been imposed for the validity of the limits
- ILC will discover/exclude τ̃'s for any τ̃-LSP mass difference and any τ̃-mixing nearly up to the kinematic limit
- Even after HL-LHC, large parts of the $\tilde{\tau}\text{-}\mathsf{LSP}$ mass plane will remain unexplored
- Worst scenario for $\tilde{\tau}$ production at the ILC was reviewed taking into account ILC beam polarisation conditions
- If $\tilde{\tau}$'s exist in the kinematic range of the ILC, precision measurements of $\tilde{\tau}$ properties are possible at few percent level

OUANTUM UNIVERSE