Top quark pair production as a laboratory for probing anomalous top-quark couplings through electroweak loops

based on [JHEP 04 (2020) 017] & [PRD 104 (2021) 055045]

Till Martini

(🖂 Till [dot] Martini [at] Physik [dot] HU [hyphen] Berlin [dot] de)

Humboldt-Universität zu Berlin — Phänomenologie der Elementarteilchenphysik

in collaboration with Markus Schulze, Meng Xiao & Ren-Qi Pan

14th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale", 23-24 November 2021

Motivation

The LHC is a top quark factory:

• Top quark produced $\approx 240 \times 10^6$ times in Run-2 ($\approx 160 \ {\rm fb}^{-1}$) (1000× more than at Tevatron)

Main top quark dynamics predictable at percent level:

- NNLO+NNLL QCD predictions for single and pair production [Czakon,Fiedler,Heymes,Mitov],[Brucherseifer,Caola,Melnikov],[Berger,Gao,Yuan,Zhu],[Czakon,Mitov,Sterman], [Beneke,Czakon,Falgari,Mitov,Schwinn],[Beneke,Falgari,Klein,Schwinn],[Kidonakis],[Ferroglia,Pecjak,Yang], [Ferroglia,Marzani,Pecjak,Yang],[Czakon,Ferroglia,Heymes,Mitov,Pecjak,Scott]
- Decay known to NNLO QCD (↔ prod. via NWA and beyond) [Gao,Li,Zhu],[Brucherseifer, Caola, Melnikov],[Bevilacqua,Czakon,v.Hameren,Papadopoulos,Worek], [Denner,Dittmaier,Kallweit,Pozzorini],[Heinrich,Maier,Nisius,Schlenk,Winter], [Frederix,Frixione,Papanastasiou,Prestel,Torrielli],[Denner,Pellen]
- EW corrections known for production and width [Beenakker,Denner,Hollik,Mertig,Sack,Wackeroth],[Kühn,Scharf,Uwer],[Bernreuther,Fücker,Si], [Moretti,Nolten,Ross],[Groote,Körner,Mauser],[Basso,Dittmaier,Huss,Toggero]

Top quark sector ideal lab for New Physics searches!

Dimension-six operators in SMEFT

or an arriver

Deviations from the SM parametrised within EFT

Focus on anomalous electroweak top quark interactions E.g. (SMEFT in Warsaw basis [Dedes,Materkowska,Paraskevas,Rosiek,Suxho'17]):

$$Ztt: \mathbf{Q}_{33}^{\varphi q1} = (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) (\bar{q}'_{3 L} \gamma^{\mu} q'_{3 L}) \leftrightarrow \mathbf{C}_{33}^{\varphi q1},$$

$$tt, Wtb, \chi tt, \phi tb: \mathbf{Q}_{33}^{\varphi q3} = (\varphi^{\dagger} i \tau' \overleftrightarrow{D}_{\mu} \varphi) (\bar{q}'_{3 L} \tau' \gamma^{\mu} q'_{3 L}) \leftrightarrow \mathbf{C}_{33}^{\varphi q3},$$

$$Ztt, \chi tt: \mathbf{Q}_{33}^{\varphi u} = (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) (\bar{t}'_{R} \gamma^{\mu} t'_{R}) \leftrightarrow \mathbf{C}_{33}^{\varphi u},$$

$$Htt: \mathbf{Q}_{33}^{u\varphi} = (\varphi^{\dagger} \varphi) (\bar{q}'_{3 L} t'_{R} \widetilde{\varphi}) \leftrightarrow \mathbf{C}_{33}^{u\varphi}$$

Top quark coupling to W^{\pm}, Z, H

Modified Feynman rules I: W^{\pm} , Z $\stackrel{\text{-ie}}{\sqrt{2s_w}} \gamma^{\mu} \left(d_L^W P_L + d_R^{W,SM} P_R \right) \& \stackrel{\text{Z}}{\sqrt{2s_w}} \left(\frac{-\frac{-ie}{8}}{\sqrt{2s_w}} \gamma^{\mu} \left(d_L^Z P_L + d_R^Z P_R \right) \right)$ with $P_{R/L} = \frac{1}{2} (1 \pm \gamma_5)$, $d_L^W = d_L^{W,SM} + \frac{v^2}{\Lambda^2} C_{33}^{q33}$ $\& d_L^Z = d_L^{Z,SM} + \frac{v^2}{\Lambda^2} C_{33}^{q23}$, $d_R^Z = d_R^{Z,SM} - \frac{1}{2} \frac{v^2}{\Lambda^2} C_{33}^{q24}$ **SMEFT** \Rightarrow simple coupling replacement

Modified Feynman rules III: H

$$\underbrace{\mathbb{H}_{--}}_{v} \left\langle z = \frac{-im_{t}}{v} + \frac{iv^{2}}{\sqrt{2}\Lambda^{2}} \left(P_{L} C_{33}^{\mu\varphi^{*}} + P_{R} C_{33}^{\mu\varphi} \right) = \frac{-im_{t}}{v} \left(\underbrace{\kappa}_{v} + i\gamma_{5}\widetilde{\kappa} \right) \quad \text{with} \quad \kappa = 1 - \frac{v}{\sqrt{2}m_{t}} \frac{v^{2}}{\Lambda^{2}} \operatorname{Re}(C_{33}^{\mu\varphi}) \quad \& \quad \widetilde{\kappa} = -\frac{v}{\sqrt{2}m_{t}} \frac{v^{2}}{\Lambda^{2}} \operatorname{Im}(C_{33}^{\mu\varphi}) \quad \text{with} \quad \kappa = 1 - \frac{v}{\sqrt{2}m_{t}} \frac{v^{2}}{\Lambda^{2}} \operatorname{Re}(C_{33}^{\mu\varphi}) \quad \& \quad \widetilde{\kappa} = -\frac{v}{\sqrt{2}m_{t}} \frac{v^{2}}{\Lambda^{2}} \operatorname{Im}(C_{33}^{\mu\varphi}) \quad \text{with} \quad \kappa = 1 - \frac{v}{\sqrt{2}m_{t}} \frac{v^{2}}{\Lambda^{2}} \operatorname{Re}(C_{33}^{\mu\varphi}) \quad \& \quad \widetilde{\kappa} = -\frac{v}{\sqrt{2}m_{t}} \frac{v^{2}}{\Lambda^{2}} \operatorname{Im}(C_{33}^{\mu\varphi}) \quad \text{with} \quad \kappa = 1 - \frac{v}{\sqrt{2}m_{t}} \frac{v^{2}}{\Lambda^{2}} \operatorname{Re}(C_{33}^{\mu\varphi}) \quad \& \quad \widetilde{\kappa} = -\frac{v}{\sqrt{2}m_{t}} \frac{v^{2}}{\Lambda^{2}} \operatorname{Im}(C_{33}^{\mu\varphi}) \quad \text{with} \quad \kappa = 1 - \frac{v}{\sqrt{2}m_{t}} \frac{v^{2}}{\Lambda^{2}} \operatorname{Re}(C_{33}^{\mu\varphi}) \quad \& \quad \widetilde{\kappa} = -\frac{v}{\sqrt{2}m_{t}} \frac{v^{2}}{\Lambda^{2}} \operatorname{Im}(C_{33}^{\mu\varphi}) \quad \text{with} \quad \kappa = 1 - \frac{v}{\sqrt{2}m_{t}} \frac{v^{2}}{\Lambda^{2}} \operatorname{Re}(C_{33}^{\mu\varphi}) \quad \& \quad \widetilde{\kappa} = -\frac{v}{\sqrt{2}m_{t}} \frac{v^{2}}{\Lambda^{2}} \operatorname{Im}(C_{33}^{\mu\varphi}) \quad \text{with} \quad \kappa = 1 - \frac{v}{\sqrt{2}m_{t}} \frac{v^{2}}{\Lambda^{2}} \operatorname{Re}(C_{33}^{\mu\varphi}) \quad \& \quad \widetilde{\kappa} = -\frac{v}{\sqrt{2}m_{t}} \frac{v^{2}}{\Lambda^{2}} \operatorname{Re}(C_{33}^{\mu\varphi}) \quad \& \quad \widetilde{\kappa} = -\frac{v}{\sqrt{2}m_{t}}$$

- CP-odd states inherent to, e.g., SUSY or two-Higgs-doublet models
- Arbitrary CP-mixing possible via $\kappa, \tilde{\kappa}$
- SM recovered for $\kappa = 1$ and $\tilde{\kappa} = 0$

On-shell vs. loop sensitivity

$C^{arphi q 3}_{33}$ and $C^{arphi u}_{33}$ can be probed in $pp ightarrow t ar{t} + Z$

- On-shell sensitivity to couplings between t and Z
- Production rate low due to coupling suppression, high production threshold and branching fractions

 $\sigma_{t\bar{t}Z} \times \mathcal{B}_{Z \to \ell\ell} \times \mathcal{B}_{t\bar{t} \to \ell\nu + \mathrm{jets}} \approx 1 \ \mathrm{pb} \times 6\% \times 33\% \approx 20 \ \mathrm{fb}$

Question:

Can we exploit the **abundance of top quark pairs** and the **good perturbative control** of their theoretical description to constrain anomalous EW top quark interactions?

Idea: Sensitivity to NP from EW loops in $pp \rightarrow t\bar{t}$ Estimate:

$$\sigma_{t\bar{t}} \times \alpha \times \mathcal{B}_{t\bar{t} \to \ell\nu + ext{jets}} \approx 840 \text{ pb} \times \frac{1}{128} \times 33\% \approx 1800 \text{ fb}$$

- anomalous EW top-quark couplings enter through $Z, W^{\pm}, \chi, \phi^{\pm}, H$ running in loops
- Irred. BG: QCD $O(\alpha_s^2)$ (dom. prod. mech.), known to NNLO+NNLL ($\approx \pm 5\%$ scale unc.)
- EW corrections dominated by $\mathcal{O}(\alpha \alpha_s^2) \log^2(\hat{s}/M_W^2)$ \Rightarrow sensitivity enhancement
- SM EW corrections to tt
 production known for a long time and already implemented in, e.g., MCFM

T. Martini

Calculational details

UV divergencies

EW loop corrections yield bubble, triangle and box diagrams,

- Loop amplitudes with χ, φ[±] increase the integral tensor rank by up to 2 due to additional *φ* terms in the EFT contributions
- ightarrow Higher-rank tensor integrals ightarrow add. divergencies
- Interf. of diagrams /w Higgs loops and Born level either $\propto (\kappa^2 + \tilde{\kappa}^2)$ or $\propto (\kappa^2 \tilde{\kappa}^2)$.

(No sensitivity on signs of $\kappa, \tilde{\kappa}$)

 Wave function and mass renormalization within SMEFT required

Squared amplitude is UV finite after renormalization!

IR divergencies

 UV finite box diagrams contain additional IR poles from soft and coll. gluons in the loop:

 Canceled by mixed QCD-EW amplitudes with real gluon emission (also sensitive to EFT operators):

Loop diagrams involving Higgs boson are IR finite

Cancellation of all IR poles for modified EW top couplings!

Numerical evaluation

We build upon the existing SM implementation of $t\bar{t}$ -production at NLO EW in MCFM and allow for modified EW top couplings

 Analytic results of calculation available as external add-on: github.com/TOPAZdevelop/MCFM-8.3_EWSMEFT_ADDON

• MCFM reproduced for $\kappa=1,~\tilde{\kappa}=C^{\varphi u}_{33}=C^{\varphi q3}_{33}=0$

Loop sensitivity in $t\bar{t}$ production

Dependence of the shapes on $C_{33}^{\varphi u}, C_{33}^{\varphi q3}, \kappa, \tilde{\kappa}$

• State-of-the-art QCD predictions included in approx. way:

• NNLO QCD K-factor of 1.67, scale uncertainty $\approx\pm5\%$

• p_T^t sensitive to anom. coupling of the top to the EW gauge bosons

• $\Delta y_{t\bar{t}}$ and $M_{t\bar{t}}$ sensitive to CP structure of top Yukawa coupling

On-shell benchmark processes

Benchmark $t\bar{t} + Z$

- Sensitive to anom. coupling of the top to the EW gauge bosons
- Calculation from TOPAZ framework (github.com/TOPAZdevelop/TOPAZ)
- NLO QCD K-factor of 1.23
- Scale uncertainty $\approx \pm 15\%$
- Z decaying into e^+e^- or $\mu^+\mu^-$

Benchmarks $t\bar{t} + H$, tHq, tHW

- Sensitive to anomalous top Yukawa coupling
 - Single top + Higgs sensitive to relative sign of coupling of Higgs boson to top and W

- Theoretical predictions with anomalous *Htt* coupling available [Demartin, Maltoni, Mawatari, Zaro'15], [Gritsan, Röntsch, Schulze, Xiao'16], [Kraus, TM, Peitzsch, Uwer'19] and implemented in the JHU Generator framework
- JHU Generator generates unweighted events which can be passed to PS+DetectorSim.
- JHU Generator website: spin.pha.jhu.edu

Exclusion limits

Conclusions

Probing New Physics through EW loops

- Calculation of EW correction to $pp
 ightarrow t ar{t}$
- NP included via SMEFT parametrisation of Ztt, Wtb, Htt couplings

Comparison to direct on-shell probes

- Anomalous coupling of top to EW gauge bosons
 - $t\bar{t}$ at $\mathcal{O}(\alpha \alpha_s^2)$ significantly more sensitive to NP than $t\bar{t} + Z$
 - Promising new way for EW studies in $t\bar{t}$ production at LHC

• Anomalous top Yukawa coupling

- $t\bar{t}$ expected to exclude $|f_{CP}| > 0.81$ for 300 fb⁻¹ and $|f_{CP}| > 0.67$ for 3 ab⁻¹ at 95% CL
- pure pseudo-scalar model excluded by tHW at 2σ for 300 fb⁻¹ and $|f_{CP}| > 0.48$ for 3 ab⁻¹ at 95% CL
- tHq gives most stringent 95% CL exclusion: $|f_{CP}| > 0.68$ for 300 fb⁻¹ and $|f_{CP}| > 0.22$ for 3 ab⁻¹
- $t\bar{t}$ best probe to exclude purely CP-odd top Yukawa coupling

 $t\bar{t}$ and respective on-shell processes with anomalous EW top couplings available as add-on to MCFM or via TOPAZ & JHU Generator respectively