Top Quark Mass Measurement with a New Profiled Likelihood Nuisance Fit

14th Annual Meeting of the Helmholtz Alliance 'Physics at the Terascale'

MEV 1450R0150

Christoph Garbers, Peter Schleper, Hartmut Stadie

Universität Hamburg

The Top Quark $t\bar{t} \rightarrow I$ +jets channel

- $t \overline{t}
 ightarrow$ l+jets useful for precision mass measurement due to
 - branching ratio
 - easy to trigger
 - only one ν

November 23, 2021

Samples and Selection

data: $35.9 \,\mathrm{fb}^{-1}$ Run 2 2016; signal MC: powheg + pythia8

selection: 1 lepton + 4 jets

- ▶ HLT: isolated muon (electron) with $p_T > 24(27)$ GeV muon (electron) selection: $p_T > 26(29)$ GeV and $|\eta| < 2.4$ veto on events with additional leptons four anti-k_t^{R=0.4} jets with $p_T > 30$ GeV, $|\eta| < 2.4$, $\Delta R(muon, jet) > 0.3$
- b-tagging: DeepJet (1% mis-tag, 78% efficiency)
 - at least two b-tags in selected iets

difference to EPJC-78-891: DeepJet instead of CSVv2 ($\epsilon_{bTag WP medium}$:

70%→78%)

fit event kinematics to tt-hypothesis, cut on P_{gof} > 0.2

	EPJC-78-891 (CMS-TOP-17-007)	this analysis (CMS-TOP-20-008)
data	Single[Muon,Electron] Run2016[B-H]	
	03Feb2017	17Jul2018
lumi-JSON	13TeV Collision 16	
	23Sep2016ReReco	07Aug2017
signal MC	TT powheg-pythia8	
	MiniAODv2 80X	MiniAODv3 94X
	CUETP8M2T4 tune	CP5 tune
biggest Unc. src.	JEC, CR, ME gen.	?
$\#\mu$ events	101 992	140 362
#e events	59 504	87 265

November 23, 2021

Kinematic Fit

Fit the event kinematics to a $t\bar{t}$ hypothesis Input: p_T and angles of the jets and lepton and E_T

Observables

 m_t is measured by fitting the templates to date

$$m_t^{fit}$$
 (1D)
 m_t^{fit} , m_W^{reco} (2D)
 m_t^{fit} , m_W^{reco} , $m_{l,b}^{reco}|_{P_{gof}<0.2}$ (3D)

new observable $m_{l,b}^{reco} = \sqrt{\left(P_{lepton}^{reco} + P_b^{reco}\right)^2}$, inspired by $t\bar{t} \rightarrow di$ -lepton but different jet-parton assignment de-correlate $m_{l,b}^{reco}$ from m_t^{fit} as $m_{l,b}^{reco}/m_t^{fit}$

Observables Distribution

November 23, 2021

Observables Parameterisation

Bin edges are set to approx. equal event count per bin to improve the fit stability.

Nuisance Template Fit

Fit templates $P(obs | \alpha_{obs,1}, ..., \alpha_{obs,n})$, $obs \in [m_t^{fit}, m_W^{reco}, m_{l,b}^{reco}|_{P_{gof} < 0.2}, m_{l,b}^{reco}/m_t^{fit}, R_{b,q}^{reco}]$ with linear parametrisation $\alpha_k(m_t) = (\alpha_k^0 + s_k^0 (mt - 172.5 \text{GeV})).$ α_k^0, \vec{s}_k are derived by fitting to simulation.

Add one nuisance θ_i for every systematic uncertainy source $\alpha_k(m_t, \vec{\theta}) = (\alpha_k^0 + s_k^0 (m_t - 172.5 \text{GeV})) \prod_i (1 + s_k^i \theta_i).$ θ_i is constrained by Gauss(0,1), corresponding to systematic variation by $\pm 1\sigma$.

Add $\beta_k, \vec{\omega}_k$ to account for simulation statistics. $\alpha_k(m_t, \vec{\theta}, \beta_k, \vec{\omega}_k)$ $= (\alpha_k^0 + \beta_k + s_k^0 (m_t - 172.5 \text{GeV}) + \omega_k^0 \cdot 1 \text{GeV}) \prod_i (1 + s_k^i \theta_i + \omega_k^i)$ $\beta_k, \vec{\omega}_k$ are constrained by multi-dim Gaussian around 0 from the covariance of the α_k^0, \vec{s}_k fits.

Nuisance Template Fit

Fit templates $P(obs | \alpha_{obs,1}, ..., \alpha_{obs,n})$, $obs \in [m_t^{fit}, m_W^{reco}, m_{l,b}^{reco}|_{P_{gof} < 0.2}, m_{l,b}^{reco}/m_t^{fit}, R_{b,q}^{reco}]$ with linear parametrisation

 $\alpha_k(m_t) = (\alpha_k^0 + s_k^0 (mt - 172.5 \text{GeV})).$

 α_k^0, \vec{s}_k are derived by fitting to simulation.

Add one nuisance θ_i for every systematic uncertainy source $\alpha_k(m_t, \vec{\theta}) = (\alpha_k^0 + s_k^0 (m_t - 172.5 \text{GeV})) \prod_i (1 + s_k^i \theta_i).$ θ_i is constrained by Gauss(0,1), corresponding to systematic variation by $\pm 1\sigma$.

Add $\beta_k, \vec{\omega}_k$ to account for simulation statistics. $\alpha_k(m_t, \vec{\theta}, \beta_k, \vec{\omega}_k)$ $= (\alpha_k^0 + \beta_k + s_k^0 (m_t - 172.5 \text{GeV}) + \omega_k^0 \cdot 1 \text{GeV}) \prod_i (1 + s_k^i \theta_i + \omega_k^i)$ $\beta_k, \vec{\omega}_k$ are constrained by multi-dim Gaussian around 0 from the covariance of the α_k^0, \vec{s}_k fits.

Nuisance Template Fit

Fit templates $P(obs|\alpha_{obs,1},...,\alpha_{obs,n})$, $obs \in [m_t^{fit}, m_W^{reco}, m_{l,b}^{reco}|_{P_{gof}<0.2}, m_{l,b}^{reco}/m_t^{fit}, R_{b,q}^{reco}]$ with linear parametrisation

 $\alpha_k(m_t) = (\alpha_k^0 + s_k^0 (mt - 172.5 \text{GeV})).$

 α_k^0, \vec{s}_k are derived by fitting to simulation.

Add one nuisance θ_i for every systematic uncertainy source $\alpha_k(m_t, \vec{\theta}) = (\alpha_k^0 + s_k^0 (m_t - 172.5 \text{GeV})) \prod_i (1 + s_k^i \theta_i).$ θ_i is contrained by Gauss(0,1), corresponding to systematic variation by $\pm 1\sigma$.

Add $\beta_k, \vec{\omega}_k$ to account for simulation statistics. $\alpha_k(m_t, \vec{\theta}, \beta_k, \vec{\omega}_k)$ $= (\alpha_k^0 + \beta_k + s_k^0 (m_t - 172.5 \text{GeV}) + \omega_k^0 \cdot 1 \text{GeV}) \prod_i (1 + s_k^i \theta_i + \omega_k^i)$ $\beta_k, \vec{\omega}_k$ are constrained by multi-dim Gaussian around 0 from the covariance of the α_k^0, \vec{s}_k fits.

Nuisance Fit Example Variations

Example variation effects on the templates

i.e. m_W^{reco} depends on JER much more than m_t^{fit} , giving a way to reduce its impacts, $R_{b,q}^{reco}$ could do the same for the b-fragmentation modelling uncertainty

Nuisances Impact Example

Systematic uncertainties predicted from pseudo-experiments when using the two observables m_{tt}^{ft} and m_{W}^{reco} as the former CMS analyses in $t\bar{t} \rightarrow l+jets$

only biggest uncertainties shown

November 23, 2021

November 23, 2021

Christoph Garbers

11

Summary and Outlook

- Used new reference simulation, including updated UE tune
- Improved event selection with DeepJet b-tagger and different electron HLT
- Included systematic uncertainties as nuisances in the fit
- New observables $R_{b,q}^{reco}, m_{l,b}^{reco}/m_t^{fit}, m_{l,b}^{reco}|_{P_{gof} < 0.2}$
- ▶ Improve of syst. unc. in $t\bar{t} \rightarrow l+jets$ 0.62 GeV $\rightarrow < 0.5$ GeV expected

