

Heavy-Flavor Hadro-Production with Heavy-Quark Masses Renormalized in the $\overline{\text{MS}}$, MSR and On-Shell Schemes

M.V. Garzelli, L. Kemmler, S. Moch, O. Zenaiev

Mostly from [arXiv:2009.07763] II. Institute for Theoretical Physics - Hamburg

Lucas Kemmler

Physics at the Terascale

23 November 2021 1/15

イロト イポト イヨト イヨト

Fermion Masses and Renormalization Schemes

- Fermion Masses are fundamental parameters of the QCD Lagrangian.
- UV-divergences appearing in the HQ self-energies require renormalization.
- Renormalized self-energy Σ^R enters the full renormalized heavy-quark propagator D^R

$$D^{R} = \frac{i}{\not p - m - i\Sigma^{R}(p, m, \mu)} \tag{1}$$

 \rightarrow Fixing a renormalization scheme to find relation between bare and physical mass.

Lucas Kemmler

Physics at the Terascale

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 1 □ 0 0 0 23 November 2021 2/15

Pole-Scheme

• On-shell renormalization condition:

$$\Sigma(p^2 = m^2) = 0 \tag{2}$$

• Pole of the full quark propagator defines the pole mass at

$$p^2 = m^2 = (m^{\text{pole}})^2$$
 (3)

- independent of the renormalization scale μ_R and gauge invariant
- \rightarrow Short comings: Pole-mass is based on the idea of quarks appearing as asymptotic states which is not true due to confinement.
 - renormalon ambiguity making m^{pole} carrying intrinsic uncertainties of order $O(\Lambda_{QCD})$ (see Bigi et al. [hep-ph/9402360]) and Beneke, Braun [hep-ph/9402364])
 - poor convergence of perturbative series (see e.g. Dowling, Moch, Eur. Phys. J. C (2014) 74:3167)
- \rightarrow Long distance (ld) sensitivity

Lucas Kemmler

Physics at the Terascale

Short-Distance Relation to the Pole Mass

$$m^{\text{pole}} = m^{\text{sd}}(R, \mu_R) + \delta m^{\text{pole-sd}}(R, \mu_R)$$
(4)

- $\delta m^{\text{pole-sd}}$ removing the renormalon and the dependence of the sd-mass on ld-aspects
- sd-masses depend on two different scales: (see Hoang et al. [arXiv:0803.4214])
 - μ_R : Renormalization scale connected to UV-divergences
 - R: Scale associated with the IR-RGE
- \rightarrow Insensitivity of sd-masses to ld-aspects removes the renormalon ambiguity.
- \rightarrow Cross-section formulae become more complicated

Lucas Kemmler

Physics at the Terascale

MS-Scheme

- Subtraction of poles resulting from dimensional regularization.
- \rightarrow Mass becomes scale dependent.
 - Renormalized mass evolves according to the RGE wrt. the renormalization scale μ_R , governed by the mass anomalous dimension $\gamma(\alpha_S(\mu_R))$ known up to four loops: (see Chetyrin, Steinhauser, [hep-ph/9907509] and [hep-ph/9911434] as well as Melnikov, Ritbergen, [hep-ph/9912391])

$$\mu_R^2 \frac{\mathrm{d}m(\mu_R)}{\mathrm{d}\mu_R^2} = -\gamma(\alpha_S(\mu_R))m(\mu_R) \tag{5}$$

• For $\overline{\text{MS}}$ -scheme: $R = m(\mu_R)$

Lucas Kemmler

イロトスポトメラトメラト

Mass-Conversion Pole- and $\overline{\text{MS}}$ -Scheme

• Well known conversion to the on-shell masses: (see e.g. Gray et al., Z. Phys. C48 (1990) 673-680)

$$m^{\text{Pole}} = m(\mu_R) \left(1 + \sum_{i=1}^{\infty} c_i \left(\frac{\alpha_S}{\pi} \right)^i \right)$$
(6)

- Coefficients c_i are scale dependent, $c_i \propto L = \ln\left(\frac{\mu_R^2}{m(\mu_R)^2}\right)$ and known up to four loops at present.
- Number of active flavours set to $n_f = n_{lf} + 1$
- For the $\overline{\text{MS}}$ -mass renormalized at a specific scale $\mu_R = m(\mu_R)$, *L* terms cancel:

$$m^{\text{Pole}} = m(m) \left\{ 1 + 1.333 \left(\frac{\alpha_S}{\pi} \right) + (13.44 - 1.041 n_{lf}) \left(\frac{\alpha_S}{\pi} \right)^2 + (190.595 - 27.0 n_{lf} + 0.653 n_{lf}^2) \left(\frac{\alpha_S}{\pi} \right)^3 + O(\alpha_S^4) \right\}$$
(7)

Lucas Kemmler

<ロト < 回 > < 回 > < 回 > < 回 >

MSR-Scheme

See Hoang et al., [arXiv:1704.01580].

$$m^{\text{MSR}}(R) \to m^{\text{pole}}, \text{ for } R \to 0$$

 $m^{\text{MSR}}(R) \to m(m), \text{ for } R \to m(m)$

- Interpolation btw. pole- and $\overline{\text{MS}}$ -scheme
- Pole- and MSR-mass at scale R differ by self-energy corrections (s.e.c.) from scales below *R*. (see Hoang et al., [arXiv:1704.01580])
 - Pole-mass absorbing all s.e.c. up to the scale of the HQ-mass
 - MSR-mass at scale R absorbs only s.e.c. between *R* and the HQ-mass

→ Pole-mass renormalon related to s.e.c. from the scale $\Lambda_{QCD} < R$. → MSR-mass is sd-mass.

Lucas Kemmler

Physics at the Terascale

23 November 2021 7/15

Mass-Conversion Pole- and MSR-Scheme

• Consider difference btw. m^{pole} and (practical) m^{MSR} :

$$m^{\text{pole}} = m^{\text{MSR}}(R) + R \sum_{i=0}^{\infty} a_i \left(\frac{\alpha_S(R)}{\pi}\right)^i, \qquad (8)$$

where coefficients a_i given in Hoang et al., [arXiv:0803.4214].

• Evolution of the MSR mass with the *R* scale follows the RGE: (see Hoang et al., [arXiv:1704.01580])

$$R\frac{\mathrm{d}m^{\mathrm{MSR}}(R)}{\mathrm{d}R} = -R\gamma^{\mathrm{MSR}}(\alpha_{S}(R)) \tag{9}$$

Lucas Kemmler

Physics at the Terascale

23 November 2021 8/15

イロト イポト イヨト イヨト

Diff. Cross-Sections in $\overline{\text{MS}}$ - and MSR-Scheme

- Obtain cross sections with different mass renomalization schemes from the widely used on-shell prescription.
- Substitute the pole-mass with its expressions in terms of the MS- or MSR-mass (eq. (6) and (8)).
- 3 Perform a perturbative expansion in terms of α_S up to the needed order.
- \rightarrow At NLO accurary, there is:

$$\sigma^{\overline{\mathrm{MS}}}(m(\mu_{R})) = \sigma^{\mathrm{pole}} \bigg|_{m^{\mathrm{pole}}=m(\mu_{R})} + (m(\mu_{R}) - m^{\mathrm{pole}}) \left(\frac{\mathrm{d}\sigma^{0}}{\mathrm{d}m}\right) \bigg|_{m=m(\mu_{R})}$$
(10)
$$\sigma^{\mathrm{MSR}}(m^{\mathrm{MSR}}(R)) = \sigma^{\mathrm{pole}} \bigg|_{m^{\mathrm{pole}}=m^{\mathrm{MSR}}(R)} + (m^{\mathrm{MSR}}(R) - m^{\mathrm{pole}}) \left(\frac{\mathrm{d}\sigma^{0}}{\mathrm{d}m}\right) \bigg|_{m=m^{\mathrm{MSR}}(R)}$$
(11)

Diff. Cross-Sections for tt-production

- top p_T distribution at NLO for the process $pp \rightarrow t\bar{t}$ at $\sqrt{s} = 7$ TeV for various rapidity ranges
- Central prediction ($\mu_F = \mu_R$) at the peak sensitive to the choice of the renormalization scheme.
- ~ 20 % (~ 10 %) for comparing pole- and $\overline{\text{MS}}$ (MSR)-scheme
 - Impact not neglible when comparing to the NLO scale-uncertainties

Lucas Kemmler

Physics at the Terascale

23 November 2021

10/15

PDF-Variation with a Dynamic Scale

- $m_t(m_t) = 163 \text{ GeV}$ with $\mu_R = \mu_F = \sqrt{p_t^2 + 4m_t(m_t)^2}$
- Relatively small differences among predictions with different PDFs

→ Predictions with different central PDFs still lay within the scale uncertainty band produced using the ABMP16 NLO nominal set.

Lucas Kemmler

Physics at the Terascale

23 November 2021 11/15

< ロト < 同ト < 三ト < 三ト

Dynamical vs. Static Mass Ren. Scale

• 7-point variation: μ_m fixed; only (μ_R, μ_F) varied

- 15-point variation: (μ_R, μ_F, μ_m) varied independently
- $K = \frac{\sigma^{\text{NLO}}}{\sigma^{\text{LO}}}$: For the central predictions, we find for the total cross sections $K^{m(\mu)} = 1.3 < K^{m(m)} = 1.52$.
- → In the peak region (~ 70 GeV), $\Delta \sigma_{m(m)} = ^{+14.4 \%}_{-12.2 \%}$ and $\Delta \sigma_{m(\mu)} = ^{+5.3 \%}_{-8.6 \%}$.
- → Improved convergence and scale uncertainties using a dynamical mass renormalization scale.
- \rightarrow Comparison consistent over the whole kinematic range.

Lucas Kemmler

Physics at the Terascale

23 November 2021

12/15

Distributions with Various Scales

- Our NLO predictions consistent with those reported in (Catani et al., [arXiv:2005.00557]).
- Using (μ_R^0, μ_F^0) results in larger scale uncertainty bands than using $(\mu_R^{'}, \mu_F^{'})$ and $(\mu_R^{''}, \mu_F^{''})$.

Lucas Kemmler

Physics at the Terascale

23 November 2021 13/15

Distributions with Various Scales

• Catani et al. reported small NNLO corrections for predictions with $\mu_R = \mu_F = m(m).$

(Catani et al., [arXiv:2005.00557])

- Predictions with $\mu_R^{\prime\prime\prime}$ lay close to μ_R^{\prime} and $\mu_R^{\prime\prime}$.
- Predictions with $\mu_R^{\prime\prime\prime}$ sit closer to $\mu_R^{\prime\prime} = m(m)$ than those with μ_R^0
- → Slow perturbative convergence of μ_R^0 improved by using a dynamical mass renormalization scale instead of a static one.

Lucas Kemmler

Physics at the Terascale

23 November 2021 14/15

Conclusions

- Sd-mass definitions have smaller parametric uncertainties compared to the pole mass definition.
- Choice of the mass scheme as well as the choice of μ_R , μ_F have impact on the rate of convergence of the perturbative expansion of the cross sections.
- Using a running mass, i.e. $m_t(\mu_m)$ evaluated at $\mu_m = \mu_R$, leads to reduced scale uncertainties and increased rate of convergence with respect to $m_t(m_t)$ for scales of the type $(\mu_R, \mu_F) = \sqrt{p_T^2 + \kappa m_t^2(\mu_m)}$ for $\kappa = 1 \dots 4$.
- Analogous studies for charm and bottom were done as well as simultaneous extraction of α_S , m_t and PDFs in different mass renormalization schemes. (see our paper: [arXiv:2009.07763])

Lucas Kemmler

Physics at the Terascale

 Thank you for your attention!

Lucas Kei	mmler
-----------	-------

Physics at the Terascale

23 November 2021 15/15

900

(日)

HQ MSR, $\overline{\text{MS}}$ and Pole Masses (in GeV)

$m^{MSR}(1)$	$m^{MSR}(3)$	$m^{MSR}(9)$	m(m)	m_{1lp}^{pl}	m_{2lp}^{pl}	m_{3lp}^{pl}	m_{1lp}^{pl}	m_{2lp}^{pl}	m_{3lp}^{pl}
	from $m(m)$			from $m(m)$)	from MSR(3)		
top-quark									
171.8	171.5	170.9	162.0	169.5	171.1	171.6	171.8	172.0	172.1
172.9	172.5	171.9	163.0	170.5	172.1	172.6	172.9	173.0	173.1
173.9	173.6	173.0	164.0	171.5	173.2	173.6	173.9	174.1	174.2
bottom-quark									
4.69	4.30	3.67	4.15	4.53	4.74	4.90	4.61	4.80	4.97
4.72	4.33	3.70	4.18	4.57	4.77	4.94	4.64	4.84	5.01
4.75	4.36	3.74	4.21	4.60	4.81	4.97	4.68	4.87	5.04
charm-quark									
1.33	0.94	0.31	1.25	1.46	1.68	1.98	1.25	1.44	1.61
1.37	0.97	0.35	1.28	1.50	1.70	2.00	1.29	1.48	1.65
1.40	1.01	0.38	1.31	1.53	1.73	2.02	1.33	1.52	1.69

- Input is m(m). Fix $\alpha_S(M_Z)^{n_f=5} = 0.118$ and $\alpha_S(M_Z)^{n_f=3} = 0.106$ and α_S evolved at four loops in all cases.
- For top, MSR mass value at R = 3 GeV is numerically close to the values obtained in the on-shell scheme at two or three loops.
- Charm pole masses obtained from the conversion of MS- or MSR-scheme do not seem to converge.

Lucas Kemmler

Physics at the Terascale

RGE Solutions providing HQ-Masses (1-Loop)

- RGE solutions providing HQ-masses at one-loop wrt. variations of the renormalisation scale (left) and the *R*-scale (right).
- Input: α_S evolution at four loops, with $\alpha_S(M_Z) = 0.118$ as reference value.

Lucas Kemmler

Physics at the Terascale

23 November 2021 15/15

Differential Cross-Section wrt. $M_{t\bar{t}}$

- No MSR-implementation for MCFM yet
- Impact of scheme choice largest at low $M_{t\bar{t}}$ close to production threshold due to derivative term in eq. (10) becoming dominant.
- → Exclusion of MS-scheme from being a suitable mass renormalization scheme for observables close to threshold.

I D b I A b

See Dowling, Moch, Eur. Phys. J. C (2014) 74:3167 for a detailed analysis of top-quark pair invariant mass distributions.

Lucas Kemmler

Physics at the Terascale

23 November 2021 15/15

SOR

Dynamical vs. Static Mass Ren. Scale II

• 7-point scale variation with fixed μ_m : $\mu_m = \mu_R$ (left) and $\mu_m = m_t(m_t)$ (right).

- Scale uncertainties around the maximum (~ 70 GeV): $\Delta \sigma_{m(m)} = ^{+11.3 \%}_{-12.2 \%}$ and $\Delta \sigma_{m(\mu)} = ^{+5.3 \%}_{-8.6 \%}$.
- \rightarrow Reduced scale uncertainties using a dynamical mass renormalization scale.

Lucas Kemmler

Physics at the Terascale

▲ □ ▶ ▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ か Q ○
23 November 2021 15/15

Total Cross-Sections HQs diff. Ren. Schemes

Lucas Kemmler

Physics at the Terascale

Extraction of Top Mass, $\alpha_s(M_Z)$ and PDFs

Settings	Fit results
pole mass	$\chi^2/dof = 1364/1151, \chi^2_{t\bar{t}}/dof = 20/23$
$\mu_R = \mu_F = H'$	$m_t^{\text{pole}} = 170.5 \pm 0.7 (\text{fit}) \pm 0.1 (\text{mod})^{+0.0}_{-0.1} (\text{par}) \pm 0.3 (\mu) \text{ GeV}$
Ref. CMS Coll.	$\alpha_S(M_Z) = 0.1135 \pm 0.0016 (\text{fit})^{+0.0002}_{-0.0004} (\text{mod})^{+0.0008}_{-0.0001} (\text{par})^{+0.0011}_{-0.0005} (\mu)$
pole mass	$\chi^2/dof = 1363/1151, \chi^2_{t\bar{t}}/dof = 19/23$
$\mu_R = \mu_F = m_t^{\text{pole}}$	$m_t^{\text{pole}} = 169.9 \pm 0.7(\text{fit}) \pm 0.1(\text{mod})_{-0.0}^{+0.0}(\text{par})_{-0.9}^{+0.3}(\mu) \text{ GeV}$
this work	$\alpha_S(M_Z) = 0.1132 \pm 0.0016 (\text{fit})^{+0.0003}_{-0.0004} (\text{mod})^{+0.0003}_{-0.0000} (\text{par})^{+0.0016}_{-0.0008} (\mu)$
MS mass	$\chi^2/dof = 1363/1151, \chi^2_{t\bar{t}}/dof = 19/23$
$\mu_R = \mu_F = m_t(m_t)$	$m_t(m_t) = 161.0 \pm 0.6(\text{fit}) \pm 0.1(\text{mod})^{+0.0}_{-0.0}(\text{par})^{+0.4}_{-0.8}(\mu) \text{ GeV}$
this work	$\alpha_S(M_Z) = 0.1136 \pm 0.0016 (\text{fit}) {}^{+0.0002}_{-0.0005} (\text{mod}) {}^{+0.0002}_{-0.0001} (\text{par}) {}^{+0.0015}_{-0.0009} (\mu)$
MSR mass, $R = 3$ GeV	$\chi^2/dof = 1363/1151, \chi^2_{t\bar{t}}/dof = 19/23$
$\mu_R = \mu_F = m_t^{MSR}$	$m_t^{\text{MSR}} = 169.6 \pm 0.7 \text{(fit)} \pm 0.1 \text{(mod)}_{-0.0}^{+0.0} \text{(par)}_{-0.9}^{+0.3} (\mu) \text{ GeV}$
this work	$\alpha_S(M_Z) = 0.1132 \pm 0.0016 (\text{fit}) {}^{+0.0003}_{-0.0004} (\text{mod}) {}^{+0.0002}_{-0.0000} (\text{par}) {}^{+0.0016}_{-0.0008} (\mu)$

- CMS data on double and triple differential cross sections reported in [arXiv:1904.05237] and H1-Zeus combined HERA inclusive DIS data [arXiv:1506.06042] used.
- Extraction procedure similar to the one used by the CMS collaboration. Extended for extractions of \overline{MS} and MSR top masses.
- → Results obtained in a *simultaneous* fit of $m_t(m_t)$, $\alpha_s(M_Z)$ and the PDFs preserving correlations among each other.

Lucas Kemmler

Physics at the Terascale

23 November 2021 15/15

Comparisons for Different Mass Extractions

Lucas Kemmler

Physics at the Terascale

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 1 □ 0 0 0 23 November 2021 15/15

- $\sqrt{s} = 8 \text{ TeV}, m_t^{\text{Pole}} = 173 \text{ GeV}, m_t(m_t) = 163 \text{ GeV}, \text{ABMP11}$
- $\mu = m_t^{\text{Pole}}$ (left), $\mu = m_t(m_t)$
- → Relative increase in pole-scheme for $\mu_R = \mu_F = m_t^{\text{Pole}}$: $\frac{\sigma_{\text{NLO}}}{\sigma_{\text{LO}}} = 1.46$ and $\frac{\sigma_{\text{NNLO}}}{\sigma_{\text{NLO}}} = 1.12$.
- → Relative increase in $\overline{\text{MS}}$ -scheme for $\mu_R = \mu_F = m_t(m_t)$: $\frac{\sigma_{\text{NLO}}}{\sigma_{\text{LO}}} = 1.26$ and $\frac{\sigma_{\text{NNLO}}}{\sigma_{\text{NLO}}} = 1.03$.

See Dowling, Moch, Eur. Phys. J. C (2014) 74:3167.

Lucas Kemmler

Physics at the Terascale

23 November 2021 15/15

NNLO Scale Uncertainties

• $\sqrt{s} = 8$ TeV, ABMP11

 \rightarrow For the on-shell scheme, $\Delta \sigma_{\text{NNLO}} = ^{+3.8 \%}_{-6.0 \%}$ for $\mu/m_t^{\text{Pole}} \in [1/2, 2]$

 \rightarrow For the $\overline{\text{MS}}$ scheme, $\Delta \sigma_{\text{NNLO}} = ^{+0.1 \%}_{-3.0 \%}$

See Dowling, Moch, Eur. Phys. J. C (2014) 74:3167.

Lucas Kemmler

Physics at the Terascale

▲ □ ▶ ▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ◆ ○ Q ○
23 November 2021 15/15

Diff. Distributions for tTH

- Set up: MMHT2014 with $\alpha_S(M_Z) = 0.118$, $m_t(m_t) = 163.2$ GeV, $m_t^{\text{Pole}} = 172.5 \text{ GeV}, m_H = 125 \text{ GeV}, \mu_R = \mu_F = m_{t\bar{t}H}$
- \rightarrow Shape and scale uncertainties on cross sections show negligible differences between pole- and MS-scheme.

See A. Saibel, Phenomenology of t tH Production with Top Quark Running Mass and the Differential Cross-Section Measurement of t \bar{t} + b-jets Production in the Dilepton Channel at $\sqrt{s} = 13$ TeV with CMS

Experiment, PHD-Thesis, 2021.

Lucas Kemmler

Physics at the Terascale

イロト イポト イヨト イヨト 23 November 2021

15/15