

Top quark mass (*m_t*) measurement in single top events

CMS Experiment at LHC, CERN Data recorded: Tue Jul 14 11:47:11 2015 CEST Run/Event: 251721 / 22303466 Lumi section: 21

untagged jet

muon

мет

b-tagged jet

Terascale Workshop, 2021

<u>CMS-TOP-19-009</u>, <u>arXiv:2108.10407</u>

Submitted to JHEP

<u>Soureek Mitra</u> On behalf of the CMS Collaboration

- Top quark mass (m_t) is an important parameter of SM
- $\Delta m_t = m_t m_{t^-} \rightarrow \text{test of } CPT \text{ invariance} \Rightarrow Lorentz symmetry (PRL 89:231602,2002)$
- Measurement in single top provides
 - \rightarrow meas. in an independent process (*EWK* production)
 - → lower Q^2 (\in [170, 340] GeV) scale than tt⁻ (> 340 GeV)
 - \rightarrow partially uncorrelated syst. from tt⁻ measurements
- ATLAS@8TeV (<u>ATLAS-CONF-2014-055</u>) :
 - → Measurement: $m_t = 172.2 \pm 0.7$ (stat.) ± 2.0 (syst.) GeV = 172.2 ± 2.1 GeV
 - → Dominant Unc.: JES (±1.5 GeV) , t ch. Had. modeling (±0.7 GeV)
- CMS@8TeV (EPJC 77 (2017) 354) :
 - $m_t = 172.95 \pm 0.77 \text{ (stat.)} {}^{+0.97}_{-0.93} \text{(syst.)} \text{ GeV} = 172.95 {}^{+1.24}_{-1.21} \text{ GeV}$ ➤ Measurement:
 - → Dominant Unc.: JES ($^{+0.68}_{-0.61}$ GeV), Fit Calibration (±0.39 GeV)

- Largest contributor to the radiative corrections to m_W and λ_H among SM particles \Rightarrow stability of EW vacuum

Event Topology and Dominant bkgs.

$t - ch : \sigma(13 \text{ TeV}) = 217.0^{+9.1}_{-7.7} \text{ pb}$

2-jets-1-tagged (2J1T)

- Large cross section but low selection efficiency \Rightarrow require very high stat. MC sample for accurate templates after event selection
- QCD-enriched side-band (SB) in data as alternative \rightarrow invert I_{rel} (*ID*) criteria of the μ (e) in the final state
- ML fit to data in Signal region to extract normalization using QCD template from SB Proof of concept in 2J0T and estimation in 2J1T
- Shape derived from SB and post-fit yield $m_T > 50$ GeV for QCD bkg. considered for further analysis
- 50% variation (shape + norm.) on the estimated QCD bkg. contribution as a systematic for final meas.

Estimation of QCD multijet bkg.

Estimate neutrino p_7 from lepton 4-momenta and Missing p_T 0

$$m_{\rm W}^2 = \left(E_l + \sqrt{(p_{\rm T}^{\rm miss})^2 + p_{z,\nu}^2}\right)^2 - (\vec{p}_{{\rm T},l} + \vec{p}_{\rm T}^{\rm miss})^2 - (p_{z,l} + \vec{p}_{z,\nu})^2$$

• Quadratic solution for neutrino p_7 : ☞ For real case (~ 65%):

 \rightarrow choose the one with lowest | p₇ | (accuracy ~ 64%) ☞ For imaginary case (~ 35%):

- Set radical equal to $0 \Rightarrow$ quadratic Eqn. in neutrino p_x and p_y
- \rightarrow vary neutrino p_x and p_y keeping above Eqn. satisfied so that neutrino p_T has lowest $\Delta \varphi$ with Missing p_T

Reconstruct W-boson from lepton and neutrino 4-momenta 0 Combine b-jet and W-boson 4-momenta to reconstruct the top quark

Top Quark Reconstruction

4-momenta of the b-quark from top quark decay approximated using b-tagged jet $\Rightarrow m_t^{MC}$

Data and prediction agree within uncertainties along BDT response ■ BDT response has low corr. (\approx -13%) with m_t for signal

BDT discriminants

• Selected cut value corresponds to $\approx 60\%$ signal purity

BDT selection threshold optimized at minimum unc. due to calibration w.r.t true mass

• m_t distribution <u>highly asymmetric</u> \rightarrow difficult to model accurately using parametric shapes

 \Rightarrow Use $y = \ln (m_t / 1 \text{ GeV})$ for fit \rightarrow more symmetric and easy to model

m_t after BDT selection

• Peak (y_0) well-modeled by fit

- Higher relative bkg. contribution in the ℓ^- final state - charge asymmetry of W boson radiated from the initial state quark in the signal process
- for ℓ^+ , ℓ^- , ℓ^{\pm} final sates

• $m_{fit} = Exp(y_0)$ calibrated for different true m_t values considered for signal & ttbar together and separately

Uncertainty Table

- Signal and bkg. rates added as nuisance <u>parameters</u> in the fit - profiled
- All other syst. sources externalized > fit repeated with templates obtained after syst. source variation (conservative approach)
- Largest shift w.r.t nominal result quoted in case of one-sided impact (conservative approach)
- Dominant sources on the ℓ^{\pm} case marked by shaded region

Larger syst. uncertainties in case of ℓ^- final \bigcirc state due to higher relative bkg. contribution

	Source		δm_{l^\pm}	δm_{l^+}
	Statistical + profiled systematic		± 0.32	± 0.37
		Correlation group intercalibration	± 0.09	± 0.07
	IEC	Correlation group MPFInSitu	± 0.02	± 0.02
	JES	Correlation group uncorrelated	± 0.39	± 0.17
		Total (quadrature sum)	± 0.40	± 0.18
	JER		< 0.01	< 0.01
Evporimont	Unclustered energy		< 0.01	< 0.01
cxpenmen	Muon efficiencies		< 0.01	< 0.01
Svet	Electron efficiencies		± 0.01	± 0.01
Jy51.	Pileup		± 0.14	± 0.04
	b tagging		± 0.20	± 0.18
	QCD multijet background		± 0.02	± 0.01
	Mass calibration		± 0.11	± 0.13
	Int. luminosity		< 0.01	< 0.01
	CR model and ERD		$\pm 0.24~(0.017)$	$\pm 0.39\;(0.027)$
		Gluon	+0.52	+0.75
		Light quark (uds)	-0.18	+0.18
	Flavor-dependent JES	Charm	+0.01	+0.08
		Bottom	-0.48	-0.29
		Total (linear sum)	-0.13	+0.72
		b frag. Bowler–Lund	± 0.03	± 0.06
	b quark hadronization model	b frag. Peterson	+0.14	+0.11
		Semileptonic b hadron decays	± 0.18	± 0.17
		Total (quadrature sum)	+0.23 - 0.18	+0.21 - 0.18
		ISR	± 0.01	± 0.01
		FSR	± 0.28	± 0.31
Modeling	Signal modeling	$\mu_{ m R}$ and $\mu_{ m F}$ scales	± 0.09	± 0.13
Svst		$PDF + \alpha_S$	± 0.06	± 0.06
		Total (quadrature sum)	± 0.30	± 0.34
eyet.	t ī modeling	ISR	$\pm 0.11 (0.008)$	$\pm 0.02 (0.001)$
		FSR	$\pm 0.10(0.007)$	$\pm 0.14 (0.010)$
		ME-PS matching scale	$\pm 0.10(0.007)$	$\pm 0.10(0.006)$
		$\mu_{\rm R}$ and $\mu_{\rm F}$ scales	± 0.03	± 0.03
		$PDF + \alpha_S$	< 0.01	< 0.01
		Top quark $p_{\rm T}$ reweighting		-0.08
			$\pm 0.07 (0.005)$	$\pm 0.04 (0.003)$
		Iotal (quadrature sum)	± 0.20	+0.18 - 0.20
	Parametric shapes	Signal shape	± 0.05	± 0.03
		tt bkg. shape	± 0.07	± 0.04
	±	Evv DKg. snape	± 0.03	± 0.01
· · · · · · · · · · · · · · · · · · ·	Total automatical and the fi	iotal (quadrature sum)	±0.09	
	Iotal externalized systematic		+0.69 -0.71	+0.97 -0.65
40	Grand total		+0.76 -0.77	+1.04 - 0.75
IU				

Results

ℓ^{\pm} result $\rightarrow m_t = 172.13 \pm 0.32 (\text{stat} + \text{prof}) + 0.69 (\text{ext}) \text{ GeV} = 172.13 + 0.76 \text{ GeV}$

- $R_{m_t} = \frac{m_{\bar{t}}}{m_t} = 0.9952 \pm 0.0040 \,(\text{stat} + \text{prof}) \,{}^{+0.0068}_{-0.0096} \,(\text{ext}) = 0.9952 \,{}^{+0.0079}_{-0.0104}$
- $\Delta m_t = m_t m_{\bar{t}} = 0.83 \pm 0.69 \text{ (stat + prof)} + 1.65 \text{ (ext) } \text{GeV} = 0.83^{+1.79}_{-1.35} \text{ GeV}$

Summary and Outlook

- First m_t measurement at $\sqrt{s} = 13$ TeV in single top enriched event sample with 35.9 fb⁻¹ data
- First m_t measurement to achieve sub-GeV precision in single top enriched event sample
- First measurement of R_{m_t} and Δm_t in single top enriched phase space \rightarrow test of CPT invariance; *no violation observed*
- Opminant uncertainties in the ℓ^{\pm} result:
 - → JES (± 0.40 GeV)
 - → signal FSR scale (±0.28 GeV)
 - \rightarrow color reconnection (\pm 0.24 GeV)
 - → b-quark had. model ($^{+0.23}_{-0.18}$ GeV)

LHC top WG Summary Plots

Back Up

BOSONS ----

- Higgs Potential:

- Evolve λ_H up to Planck scale (~10¹⁹ GeV)
- Knowing the top mass accurately might just reveal the fate of our universe
- $\Delta m_t = m_t m_{t^-} \rightarrow \text{test of CPT invariance} \Rightarrow \text{Lorentz symmetry}$

m_t & Electroweak symmetry

	T
er Institut für Teo	hnologie
· ·	2
GeV	7
	_
	_
and the second s	
i	
	_
fitter sm	ل ۱۳. ال
190	
m _t [Ge	V]
m _t [Ge	V]
m _t [Ge	V]
m _t [Ge	V]
m _t [Ge'	V]
m _t [Ge y) red)	V]
y) red)	V]
m _t [Ge y) red) ie)	V]
m _t [Ge y) ed)	V]
m _t [Ge y) red) ie)	V]
m _t [Ge y) ed)	V]
m _t [Ge y) red) ie)	V]
m _t [Ge y) red) ie)	V]
m _t [Ge y) red) ie)	V]
m _t [Ge y) ed) ie) 1.1 GeV = 0.1205-	
m _t [Ge y) red) ie) 1.1 GeV = 0.1205-	
m _t [Ge y) ed) ie) 1.1 GeV = 0.1205- = 0.1163	
m _t [Ge y) red) ie) 1.1 GeV = 0.1205- = 0.1163- 5.6 GeV	
m _t [Ge y) ed) ie) 1.1 GeV = 0.1205- = 0.1163 5.6 GeV	

Event selection and yield

Selection Step		Criteria for μ + je		
Trigger		HLT_ISOMu24 OR HLT_IS		
		$p_{\rm T} \ge 26$ GeV, $ \eta \le$		
		cut-based tight Id		
Tight lepton selection		$I_{rel} \le 0.06$		
		-		
		$ d_{xy} < 0.2 \text{ cm}, d_z < 0.5 \text{ cm}$ (inc		
Loos	e μ veto			
Loos	e e veto			
Jet se	election	$p_{\rm T} \ge 40$ GeV, $ \eta $		
b-ta	igging	$ \eta \leq 2.4$, cMVAv2		
QCD rejection				
Events / bin	$0.4 = \frac{\times 10^{6}}{0.4}$ $\mu^{\pm}, 2J1T$ $0.3 = 0.2$ $0.1 = 0.1$	$35.9 \text{ fb}^{-1} (13 \text{ TeV})$ $\bullet \text{ Data} \qquad ft^{-ch.}$ $\bullet \text{ tt}, tW, s^{-ch.} \bullet \text{ V} + \text{jets}, VV$ $\bigcirc \text{ QCD} \qquad \bigcirc \text{ Stat} \oplus \text{ syst}$		
<u>Data</u> Pred.	0 1.2 1 0.8 -1			

 μ charge

r Institut für Technologie

	Rank		
Variable	Muon	Electron	Description
$\Delta R_{\rm bj'}$	1	1	Angular se
Untagged jet $ \eta (\eta_{j'})$	2	2	Absolute ps
$m_{\rm bj'}$	3	3	Invariant m
$\cos \theta^*$	1	1	Cosine of the
$\cos v$	4	4	of the top q
m_{T}	5	5	Transverse
FW1		6	First-order
$ \Delta\eta_{lb} $	6	7	Absolute ps
$p_{\mathrm{T}}^{\mathrm{b}} + p_{\mathrm{T}}^{\mathrm{j}'}$	7	8	Scalar sum
$ \eta_l $	8		Absolute ps

- paration in (η, ϕ) space between the b-tagged and untagged jets seudorapidity of the untagged jet
- nass of the system comprising the b-tagged and untagged jets he angle between the lepton and untagged jet in the rest frame juark
- mass as defined in Eq. (1)
- Fox–Wolfram moment [64, 65] (electron final state)
- seudorapidity difference between the lepton and b-tagged jet
- of the $p_{\rm T}$ of the b-tagged and untagged jets
- seudorapidity of the lepton (muon final state)

Arrow indicate region of better separation between signal and bkgs. Area under ROC ~ 16 % (Lower is Better)

Extraction of *m*_t

- QCD bkg. contribution is subtracted from data \rightarrow 50% variation (shape + norm.) in estimated QCD bkg. contribution added as separate systematic source
- Simultaneous ML fit using $y = ln m_t$ distributions in μ and e final states

$$F(y; y_0, f_{t-ch.}, f_{Top}, f_{EWK}) = f_{t-ch.} \cdot F_{t-ch.}$$

 $> y_0$: POI, represents the peak position of the combined template of t - ch. and Top $> m_{Fit} = Exp(y_0)$ $> F_{t-ch}$ = asymm. Gauss. core + Landau tail $\succ F_{TOD} = Crystal ball$ $> F_{FWK} = Novosibirsk$

Signal and bkg. rates added as nuisance parameters to the fit & constrained using log-normal priors based on respective cross sections

$$f_{t-ch} \rightarrow 15\%, f_{Top}$$

- Parametric fit model validated in bkg. enriched control region defined by -0.2 < BDT < 0.8</p>
- Separate fits for ℓ^+ , ℓ^- , ℓ^\pm final states

- $-_{ch.}(y; y_0) + f_{Top} \cdot F_{Top}(y; y_0) + f_{EWK} \cdot F_{EWK}(y)$

 $\rightarrow 6\% \& f_{EWK} \rightarrow 10\%$

$m_t^{\ell^{\perp}} = 172.13 \pm 0.32$ (stat + prof

$$R_{m_t} = \frac{m_{\bar{t}}}{m_t} = 0.9952 \pm 0.0040 \,(\text{s}$$

Consistent with CPT invariance

$$f_{-0.70}^{+0.69} (\text{ext}) \text{ GeV} = 172.13_{-0.77}^{+0.76} \text{ GeV}$$

- $m_t = 172.62 \pm 0.37 (\text{stat} + \text{prof})^{+0.97}_{-0.65} (\text{ext}) \text{ GeV} = 172.62^{+1.04}_{-0.75} \text{ GeV}$
- $m_{\bar{t}} = 171.79 \pm 0.58 (\text{stat} + \text{prof})^{+1.32}_{-1.39} (\text{ext}) \text{ GeV} = 171.79^{+1.44}_{-1.51} \text{ GeV}$

stat + prof) $^{+0.0068}_{-0.0096}$ (ext) = $0.9952^{+0.0079}_{-0.0104}$

 $\Delta m_t = m_t - m_{\bar{t}} = 0.83 \pm 0.69 \text{ (stat + prof)} + \frac{1.65}{-1.16} \text{ (ext) } \text{GeV} = 0.83 + \frac{1.79}{-1.35} \text{ GeV}$

Likelihood scan and mass calibration

• Different true m_t hypotheses considered for <u>t-ch. and tt</u> simultaneously

- Fit output (m_{Fit}) compared to true m_t & offset is derived as a function of m_{Fit} separately for ℓ^+ , ℓ^- , ℓ^\pm
- \odot Unc. due to offset calibration derived from $\pm 1\sigma$ band and considered as a separate systematic

Systematic Uncertainty Estimation

- Signal and bkg. rates are added as nuisance parameters in the fit (profiled systematic source) • All other sources externalized \rightarrow fit repeated with varied templates (conservative approach) **Experimental**
- **JES**: sub-categorized into different correlation groups according to <u>JME-15-001</u>
- Unclustered energy: 10% variation
- Lepton efficiencies: Total unc. on the efficiency SFs due to identification, isolation and trigger
- \square Pileup re-weighting: 4.6% unc. on $\sigma_{\min \text{ bias}} = 69.2 \text{ mb}$
- **b-tagging**: unc. on efficiency SFs based on jet kinematics and tagger discriminators
- See QCD bkg.: 50% unc. on the estimated QCD bkg.
- rightarrow offset correction: $\pm 1\sigma$ unc. from the offset calibration curve
- ☞ Luminosity: 2.5% unc. according to LUM-17-001

Modeling

Flavor-dependent JES: Correlated across jet flavors (gluon, light [uds],

charm and bottom) as well as *signal and bkg. processes*

b-quark had. model: Dedicated <u>event weights</u> for

- \rightarrow ±1 σ variations of Bowler-Lund parameters
- comparison with Peterson parameterization
- → unc. on semi-leptonic branching ratio of B hadrons from PDG

Color Reconnection (CR): 2 alternate CR models considered for *t* - *ch*.

and *tt*⁻simultaneously using *dedicated MC samples*

Signal modeling: Dedicated <u>event weights</u> corresponding to

- → ISR and FSR scale variations
- $\rightarrow \mu_{\rm B}/\mu_{\rm F}$ scale variations
- \rightarrow **PDF (NNPDF3.0)** + α_{s} variations
- *[™] tt*[−]Modeling:
 - → using <u>dedicated MC samples</u> for variations of ISR & FSR scales, ME-PS matching scale & UE tune
 - \rightarrow <u>event weights</u> for $\mu_{\rm B}/\mu_{\rm F}$ scale, PDF+ $\alpha_{\rm S}$ & top $p_{\rm T}$ re-weighting

 $rightarrow Signal and bkg. shape: \pm 3\sigma$ variation of shape parameters

Summary of *m_t* measurements

Direct measurements

ATLAS+CMS Preliminary LHC <i>top</i> WG	m _{top} summary, √s = 7-13 TeV	April 2021			
World comb. (Mar 2014) [2] stat	total stat				
total uncertainty	m _{top} ± total (stat ± syst)	√s Ref.			
LHC comb. (Sep 2013) LHCtopWG	173.29 ± 0.95 (0.35 ± 0.88)	7 TeV [1]			
World comb. (Mar 2014)	173.34 ± 0.76 (0.36 ± 0.67)	1.96-7 TeV [2]			
ATLAS, I+jets	172.33 ± 1.27 (0.75 ± 1.02)	7 TeV [3]			
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [3]			
ATLAS, all jets	■	7 TeV [4]			
ATLAS, single top	172.2 ± 2.1 (0.7 ± 2.0)	8 TeV [5]			
ATLAS, dilepton	$172.99 \pm 0.85 (0.41 \pm 0.74)$	8 TeV [6]			
ATLAS, all jets	173.72 ± 1.15 (0.55 ± 1.01)	8 TeV [7]			
ATLAS, I+jets	172.08 ± 0.91 (0.39 ± 0.82)	8 TeV [8]			
ATLAS comb. (Oct 2018)	172.69 ± 0.48 (0.25 ± 0.41)	7+8 TeV [8]			
ATLAS, leptonic invariant mass (*)	174.48 ± 0.78 (0.40 ± 0.67)	13 TeV [9]			
CMS, I+jets	173.49 ± 1.06 (0.43 ± 0.97)	7 TeV [10]			
CMS, dilepton	172.50 ± 1.52 (0.43 ± 1.46)	7 TeV [11]			
CMS, all jets	173.49 ± 1.41 (0.69 ± 1.23)	7 TeV [12]			
CMS, I+jets	172.35 ± 0.51 (0.16 ± 0.48)	8 TeV [13]			
CMS, dilepton	172.82 ± 1.23 (0.19 ± 1.22)	8 TeV [13]			
CMS, all jets	172.32 ± 0.64 (0.25 ± 0.59)	8 TeV [13]			
CMS, single top	172.95 ± 1.22 (0.77 ± 0.95)	8 TeV [14]			
CMS comb. (Sep 2015) ⊢₩	172.44 ± 0.48 (0.13 ± 0.47)	7+8 TeV [13]			
CMS, I+jets	$172.25 \pm 0.63 (0.08 \pm 0.62)$	13 TeV [15]			
CMS, dilepton	172.33 ± 0.70 (0.14 ± 0.69)	13 TeV [16]			
CMS, all jets	172.34 ± 0.73 (0.20 ± 0.70)	13 TeV [17]			
CMS, single top (*)	172.13 ± 0.77 (0.32 ± 0.70)	13 TeV [18]			
	[1] ATLAS-CONF-2013-102 [7] JHEP 09 (2017) 118 [2] arXiv:1403.4427 [8] EPJC 79 (2019) 290	[13] PRD 93 (2016) 072004 [14] EPJC 77 (2017) 354			
* Preliminary	[3] EPJC 75 (2015) 330 [9] ATLAS-CONF-2019-046 [4] EPJC 75 (2015) 158 [10] IHEP 12 (2012) 105	[15] EPJC 78 (2018) 891			
	[5] ATLAS-CONF-2014-055 [11] EPJC 72 (2012) 2202	[17] EPJC 79 (2019) 313			
	[6] PLB 761 (2016) 350 [12] EPJC 74 (2014) 2758	[18] CMS-PAS-TOP-19-009			
165 170	175 180	185			
m _{top} [GeV]					

Indirect measurements

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots

