

BERGISCHE UNIVERSITÄT WUPPERTAL

Search for FCNC in strong interactions with the ATLAS detector

Gunnar Jäkel

Supervised by Wolfgang Wagner and Dominic Hirschbühl

Physics at the Terascale 2021

Flavor in the Standard Model

- In SM flavor is
 - conserved by the strong and electromagnetic force
 - changed by (charged) W^{\pm} bosons
- Neutral flavor changing only possible in loops

Flavor-changing neutral currents

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-037/

- In SM very small branching ratios
- Suppressed by GIM mechanism
- Some models of new physics predict many orders of magnitude higher branching ratios
- Experimental limits close to some BSM predictions

Signal region

4

- I charged lepton , veto of 2nd loose lepton
- Cuts on E_T^{miss} and $m_T(W)$ to reduce multijet background
- I b-tagged jet with 30% efficiency
 - strongly reduce the amount of mis-tagged c-jets
 - c-jet rejection rate is 1500 instead of 32 when using 60% efficiency (WIP)

Estimation of the multijet background

- The shape is modeled with the jet-electron model (diet MC with labelling jets electrons) and the anti-muon model (collision data with inverting some identification cuts)
- The rate of mis-identifying jets as charged leptons is not well described in simulation
- The rate is determined in a data-driven way
- The ETmiss (electrons) and mtw (muons) distributions are fitted for estimating the rate of the multimeter background

Validation regions

- The modeling of basic variables and reconstructed objects is validated
- Regions defined by variations in jet multiplicities
- Used for the 3 main backgrounds

Separating signal and background events

- Train artificial neural networks to obtain discriminants separating signal and background
- One network trained with the $c + g \rightarrow t$ process as signal $\rightarrow D_1$, discriminant used for the cgt analysis and $\bar{u} + g \rightarrow \bar{t}$ signal (negative channel) of the ugt analysis (sea quarks in the initial state)
- The second network is trained with $u + g \rightarrow t$ events $\rightarrow D_2$ discriminant (positive channel)

Separating signal and background events

- The modeling of the output variables of the neural networks are validated in the validation regions
- The definition of the validation regions of tq and W+jets include a cut on the output distribution
 - Increase purity of main background
 - Reduce signal contamination

Binned maximum likelihood fit

9

- Perform a binned maximum likelihood fit in the neural network output discriminant
- Use D_1 for cgt analysis and D_1 in the negative, D_2 in the positive channel for the ugt analysis
- Fit to Asimov data to extract expected upper limits for cross sections

Expected exclusion limits

- Limits are set for the branching ratios
 - $t \rightarrow u + g$ and $t \rightarrow c + g$
- Both limits expected to improve the previous ones set by ATLAS by a factor of ≈ 2
- Both limits are limited by systematic uncertainties
- Also setting Limits on EFT couplings strongest Limits on these couplings expected

Scenario	Description	$\mathcal{B}_{95}^{\exp}(t \to u + g)$	$\mathcal{B}_{95}^{\exp}(t \to c + g)$
(1)	Data statistical only	1.1×10^{-5}	2.4×10^{-5}
(2)	Experimental uncertainties only	3.1×10^{-5}	12×10^{-5}
(3)	All uncertainties except MC statistical	3.9×10^{-5}	18×10^{-5}
(4)	All uncertainties	4.9×10^{-5}	20×10^{-5}

Expected limits on EFT couplings (WIP):

$$\frac{C_{uG}^{ut}}{\Lambda} < 0.057 \,\text{TeV}^{-1} \quad \text{and} \quad \frac{C_{uG}^{ct}}{\Lambda} < 0.14 \,\text{TeV}^{-1} \quad \text{at the 95 \% C.L.}$$

Outlook

- Presented strategy to search for FCNC in strong interactions
- Final state with few objects, large background
- Use dedicated neural networks to separate signals and background
- Increase in energy increases backgrounds stronger
- Larger statistics, but limited by systematics
- Expected to improve current upper limits for considered couplings