

Measurement of the inclusive production cross section of a top-quark pair in association with a Z boson at $\sqrt{s} = 13$ TeV in final states with three leptons using deep neural nets with the ATLAS detector

<u>Steffen Korn</u>, Arnulf Quadt, Elizaveta Shabalina 14th Annual Meeting "Physics at the Terascale" - Top physics

II. Physikalisches Institut Georg-August-Universität Göttingen

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

A $t\bar{t}Z$ **motivation**

The SM-like coupling of the Z^0 boson (+ possible BSM contributions):

$$\Gamma_Z = -irac{1}{2}g_z\gamma^\mu(c_V - c_A\gamma^5 + {
m BSM} \ {
m Contributions}).$$

SM prediction: $c_A = T_3$, $c_V = T_3 - 2Q \sin^2(\theta_W)$.

 T_3 : third component of the weak isospin θ_W : the Weinberg angle.

A $t\bar{t}Z$ introduction

Building on previous $t\bar{t}Z$ full run-2 analysis, Eur.Phys.J.C 81 (2021) 737

The perfect time for ttZ

Goal: Improve on prev. analysis (9.5% unc.)

- Currently 3 ongoing refined full run 2 analyses with tentative summer 2022 aims:
 - $t\bar{t}Z 2/3/4$ leptons + jets, plans for EFT interpretation
 - $t\bar{t}\gamma$ 1/2 leptons + 1 photon + jets, plans for EFT interpretation
 - tZq 3 leptons + jets
- $t\bar{t}Z$, $t\bar{t}\gamma$ and tZq are included in several recent global fits
- Complementarity between analyses can be seen → combinations provide great opportuntity to constrain EFT parameters, 2107.13917 & JHEP04(2021)279

Steffen Korn

The 3L final state

Trilepton channel "golden $t\bar{t}Z$ channel" (w.r.t. S/B, stats.) \rightarrow Inclusive measurement drives several decisions

Variable	3L Preselection		
	=3,		
Leptons	OSSF		
	$ m_{\ell\ell}-m_Z < 10{ m GeV}$		
Lepton p_T (ℓ_1 , ℓ_2 , ℓ_3)	>27 GeV, $>$ 20GeV, $>$ 15GeV		
n _{b-jets}	≥ 1 @85%		
n _{jets}	\geq 3		

Backgrounds:

- Processes with tops: *tZq*, *tWZ*, *ttX*(*H*, *W*)
- Diboson processes: WZ & ZZ
- Processes with fake leptons

Training Goal:

- Separating $t\bar{t}Z$ from main backgrounds, tZ and WZ + busing a multi-class NN
- Open up acceptance and recover purity with NN
 → looser cuts w.r.t. previous analysis

3L NN setup

- Building 3-class neural network, separating $t\bar{t}Z$, tZq (class 1) and WZ (class 2) events
- Common NN-Framework (used in tt
 t τ
- Define inputs based on separation power studies → kinematic variabes, b-tagging variables, reconstructed top mass, ...
- Reweight classes \rightarrow integral over each classes weights is identical
- Rescale event variables $\rightarrow \in [0, 1]$ to prevent large NN weights
- Perform K-folding using early stopping

Steffen Korn

Neural Network Approach

- Concept for the 3 ℓ channel: Use physics input in 3-class NN \rightarrow define regions based on cuts \rightarrow fit these regions \rightarrow extract $\mu_{t\bar{t}Z}$ and N_{WZ+b}
- Full analysis pipeline based on NN conversion/training/optimisation, region definition, TRExFitter fits

Steffen Korn

3L SR regions

Optimise region definitions (i.e. cuts on NN discriminants) based on

- 1. best S/B in region(s)
- 2. best signal yields in region(s)
- 3. best result in asimov fit
- Resulting regions shown below.
- Use TRExFitter auto-binning for SR-3L-ttZ/tZq on P(ttZ)
- One bin in SR-3L-WZ for WZ+b normalisation
- 60% b-tagging cut rejects WZ+I almost completely → great improvement w.r.t. previous analysis (measured WZ+LF and extrapolated to WZ+HF) - now we measure WZ+HF directly

	SR-3L-ttZ	SR-3L-tZq	SR-3L-WZ
DNN-tZ Output	<0.4	≥0.4	-
DNN-diboson Output	< 0.26	< 0.26	≥0.26
N _{b-jets}	-	-	$\geq 1@60\%$

3L Event yields and fit results

- Simultaneous fit using all three regions (incl. most syst.)
- Signal strength, $\mu_{t\bar{t}Z}$, WZ+b normalisation, \mathcal{N}_{WZ+b} \rightarrow free floating
- Able to cut syst. unc. in half (excl. jet uncertainties atm.)
- Increasing precision of analysis by $\sim 35\%$ w.r.t. previous analysis
- Good purity for unfolding \rightarrow expect performance improv. there too (WIP)

ttH XS QCDscale

-1.5

-1 -0.5 0 0.5

 $(\hat{\theta} - \theta_{o})/\Delta \theta$

15

- Trilepton part of analysis in very good shape Cutting syst. unc. in half w.r.t. to previous analysis, improving $\sim35\%$ w.r.t. cut & count approach
- Multi-class NN-based regions provide great basis for unfolding and EFT studies
- Moving forward towards EFT studies \rightarrow interesting physics in the pipeline

- Trilepton part of analysis in very good shape Cutting syst. unc. in half w.r.t. to previous analysis, improving $\sim35\%$ w.r.t. cut & count approach
- Multi-class NN-based regions provide great basis for unfolding and EFT studies
- Moving forward towards EFT studies \rightarrow interesting physics in the pipeline

Thank you!