

Physics at the Terascale 2021

Studies of *t*t production with additional heavy flavour jets in p-p collisions with the ATLAS detector

Lucas Klein Supervised by: Mahsana Haleem, Raimund Ströhmer

November 24, 2021

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

- Differential cross section measurements provide tests of perturbative QCD at higher orders
- Measurement of QCD radiation jets produced with *tt* is crucial for tuning MC generator parameters
- Improve 13 TeV measurements with fullRun-2 data and with more detailed exploration of the observables in a broader phase space

Measured cross sections are higher than NLO ME+PS ttbb predictions but still consistent within uncertainties

Measurement of:

- Differential distributions in $t\bar{t}$ +*b*-jets fiducial phase space
- In *eµ* channel, opposite sign (OS)
 - Relatively smaller ambiguity in *b*-jets from top and additional jets

Challenging background:

• Mis-tagged $t\bar{t}$ +light-jets and $t\bar{t}$ +*c*-jets estimated using data-driven technique

Additional *b*-jets identification

- Full reconstruction of tops is difficult in dilepton channel
- Use kinematic variables to separate additional *b*-jets

Interesting observables:

- Jet and *b*-jet multiplicity
- p_T spectra of leading *b*-jet from top and leading additional *b*-jet

Dilepton channel:

- Exactly one electron and one muon with OS
- Leptons must satisfy single lepton trigger thresholds (25/27/28/28 GeV for 15/16/17/18)

Invariant Mass:

• Electron and muon pair invariant mass > 15 GeV

Jet Selection:

• At least 3 jets and 2 b-tagged jets

Signal:

• *tt*, QCD

MC based estimation:

- *t*t*H*
- *ttV*
- Single top *tW*
- Diboson
- Z+jets
- Others (tZ, tWZ(Z \rightarrow II), tWH, tHjb, 4 tops)

Data-driven correction:

- Fake and non-prompt
- Mis-tagged $t\bar{t}$ +light-jets and $t\bar{t}$ +c-jets

$\frac{VN}{VU}$ *tt*+lights and *tt*+*c* jets background estimation

- Contribution of the mistagged jets coming from tt

 +light-jets and tt
 +c-jets is
 significant background of tt
 +b-jets measurement
- ≥3*b*-tagged jets at 77% WP: Only about 50% of events selected at detector level have at least three b-jets at particle level
 - Other events have at least one *c*-jet or light-flavour jet which is misidentified as a *b*-jet
 - Rejection rate:
 - *c*-jets: 5
 - light-jets: 170
- Lack of precise measurements of $t\bar{t}$ +light-jets and $t\bar{t}$ +c-jets
 - → Template fits to data are performed in control regions to estimate the normalisation of $t\bar{t}$ +light-jet and $t\bar{t}$ +c-jet backgrounds

Categorization:

- Two control regions:
 - exactly 3 jets and $\geq 2 b$ -tagged jets
 - ≥ 4 jets and ≥ 2 *b*-tagged jets
- Split into categories using number of *b*-, *c* and light-jets at particle level (PL):
 - tīb
 - tībb
 - tīc
 - tī+light (= tīl)

Templates are obtained from $t\bar{t}$, $t\bar{t}H$ and $t\bar{t}V$ MC

- 3j≥2b region
- Jets sorted according to the b-tagging efficiency (b-tagging discriminant, DL1r):
 - Using 3rd b-tag discriminant ranked jet as a variable seperating ttb, ttc and ttl (also a proxy for 1st additional jet)
- 3rd leading Reco jet p_T dependent slices

- ≥4j≥2b region
- Jets sorted according to the b-tagging efficiency (b-tagging discriminant, DL1r):
 - Using 3rd and 4th *b*-tag discriminant ranked jet as a variable seperating *ttbb*, *ttb*, *ttc* and *ttl* (also a proxy for 1st and 2nd additional jet)
- 3rd leading Reco jet p_T dependent slices

VNI Post-fit Data/MC comparison

Leading *b*-jet p₁

- lepton $p_{\tau} \ge 25 GeV$
- jet p_⊤ ≥ 25 GeV
- *eµ*, OS

≥ 3 *b*-tagged jets:

≥ 4 *b*-tagged jets:

Jet multiplicity

Fiducial definiton:

- lepton $p_T \ge 25$ GeV, jet $p_T \ge 25$ GeV
- *eµ*, OS, ≥ **2** *b*-jets

Additional *b*-jet classification

2*b*-jets are assigned to top based on the highest event weights computed from all possible sets (b_1, b_2, b_3, b_4) :

 $w_{3b} = e^{-(\Delta R_{l1b}^{min} - \Delta R_{l1b1})^2} \cdot e^{-(\Delta R_{l2b}^{min} - \Delta R_{l2b2})^2} \cdot e^{-(\Delta R_{bb}^{max} - max(\Delta R_{b1b3}, \Delta R_{b2b3}))^2}$ $w_{4b} = e^{-(\Delta R_{l1b}^{min} - \Delta R_{l1b1})^2} \cdot e^{-(\Delta R_{l2b}^{min} - \Delta R_{l2b2})^2} \cdot e^{-(\Delta R_{bb}^{min} - \Delta R_{b3b4})^2}$

Discrimination variables:

from top

 (b_1, b_2, b_3, b_4)

add.

$$- \Delta R_{l1b}^{min}$$
$$- \Delta R_{l2b}^{min}$$
$$- \Delta R_{bb}^{min}$$
$$- \Delta R_{bb}^{max}$$

Efficiency:

Number of <i>b</i> -jets	detector-level efficiency	particle-level efficiency
Simple <i>b</i> -jet classifier		
No. of b -jets = 3	59(51) %	57(52)%
No. of <i>b</i> -jets ≥ 4	56(55) %	56(55) %

<u>b-jet p_T spectra</u>

• Measured distributions are consistent with various $t\bar{t}$ NLO+PS generator predictions within total uncertainties, but most MC tend to predict slightly harder p_T

Fiducial definiton:

- lepton $p_T \ge 25$ GeV, jet $p_T \ge 25$ GeV
- *eµ*, OS, **≥ 3** *b***-jets**

Main systematic uncertainties are included

UNI Unfolded Distributions

<u>b-jet p_⊺ spectra</u>

- First time measured in this phase space
- Measured distributions are consistent with various tt
 NLO+PS

 generator predicitons within large statistical uncertainties

Leading b-jet p_{T} from top: Leading add. b-jet p_{T} : 10^{3} $\frac{1}{\sigma_{\bar{t}\bar{b}}} \frac{d\sigma_{\bar{t}\bar{b}}}{dP_T^{b_1,top}} [GeV^{-1}]$ <u>ر 1 do m</u> م<u>ت</u> dP_add⊅1 [GeV⁻ Unfolded data Unfolded data ATLAS Work in progress ATLAS Work in progress 10^{2} Powhea+Herwig7.1.3 Powhea+Herwia7.1.3 s = 13 TeV, 139 fb⁻¹ s = 13 TeV, 139 fb 10² Powheg+Pythia8 Powheg+Pythia8 Sherpa2.2.10 Sherpa2.2.10 10 aMC@NLO+Herwig7.1.3 aMC@NLO+Herwig7.1.3 10 11111 aMC@NLO+Pythia8 aMC@NLO+Pythia8 Stat. Stat. Ē Stat Syst. 10 10 10⁻² 10⁻² 10^{-3} 10⁻³ 10 MC/Data 1.4 MC/Data 1.4 1.2 1.2 0.8 0.8 200 300 40 Particle p^b,^{10p} [GeV] 300 350 40 Particle p_^{add. b}, [GeV] 100 30 40 50 60 400 50 100 150 200 250 300 400

Main systematic uncertainties are included

Lucas Klein (Uni-Würzburg)

Fiducial definiton:

- lepton $p_{T} \ge 25$ GeV, jet $p_{T} \ge 25$ GeV
- *eµ*, OS, **≥ 4** *b***-jets**

- Preliminary measurements of tt+b-jets in eµ channel (OS) at particlelevel with 139 fb⁻¹ data
 - $\geq 3 b$ -jets and $\geq 4 b$ -jets region
- Challenging background tt
 t+light and tt
 t+c-jets have been measured using a data-driven estimation
- Improved observables for additional *b*-jets
- New measurements of fiducial cross sections are in agreement with previous measurements at 13 TeV
 - Improvement in statistical precision by a factor of 2 (as expected)