OVERVIEW OF SM HIGGS PHYSICS AND BSM EFFECTS

Felix Yu (JGU Mainz)

Helmholtz Alliance Terascale Annual Meeting, November 23, 2021

Current status

 After the 125 GeV Higgs discovery, the SM has no more free parameters

 We are now in an era with a boundless set of experimental measurements, and every measurement is an opportunity to refute the SM

• Q: What do we learn from ongoing Higgs measurements?

Refresher: SM Higgs phenomenology

- The SM Higgs potential is the familiar $\lambda \phi^4$ potential $\mathcal{L} \supset |D_\mu H|^2 \mu^2 |H|^2 \lambda |H|^4$
- Spontaneous symmetry breaking of SU(2)×U(1) occurs since μ² < 0

Through the $|D_{\mu} H|^2$ term, three Goldstone fields are "eaten" and become the longitudinal modes of W[±] and Z bosons

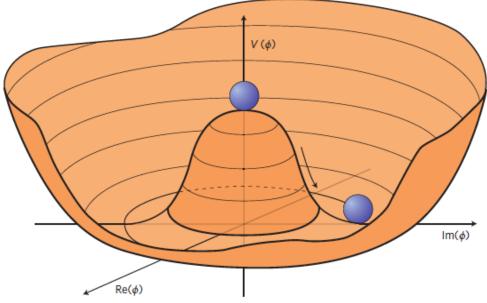
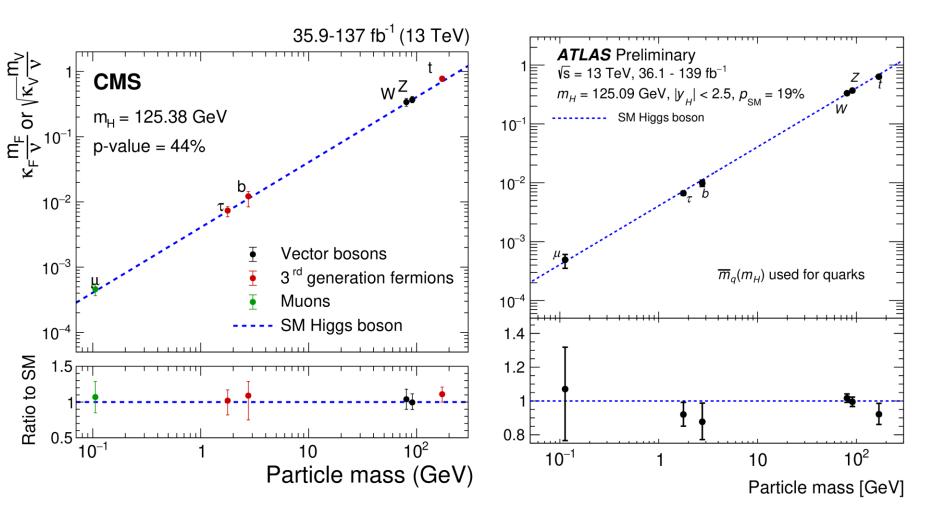


Fig. from Ellis, Gaillard, Nanopoulos, [1201.6045]


Refresher: SM Higgs phenomenology

• Chiral SM fermions only become massive after SSB

$$\mathcal{L} \supset -y_u \overline{Q}_L \tilde{H} u_R - y_d \overline{Q}_L H d_R - y_e \overline{L}_L H e_R + \text{ h.c.}$$

- Diagonalizing the arbitrary Yukawa matrices uses the global U(3)⁵ flavor symmetry, leading to V_{CKM} (and V_{PMNS} for Dirac neutrino masses)
 - Central prediction: Higgs (and Z) interactions are flavor diagonal in fermion mass basis
 - Higgs Yukawa couplings are real, proportional to fermion mass
 - Also true for Higgs couplings to massive gauge bosons

Testing SM Higgs phenomenology

CMS HIG-17-031 and updates, ATLAS-CONF-2021-053

Top-level dichotomy

- Given: the Higgs mechanism underpins the SM
 - Q: How do we conceptualize the space of BSM effects on SM Higgs physics?

Top-level dichotomy

- Given: the Higgs mechanism underpins the SM
 - Q: How do we conceptualize the space of BSM effects on SM Higgs physics?
 - A: This is the fundamental interplay at the heart of BSM Higgs phenomenology

Higgs physics touches (Most all) BSM changes (most) all of BSM Higgs physics

Key reason: |H|² is the lowest-dimension, gauge- and Lorentz-invariant operator, hence sensitive to any NP (This is also relevant for the hierarchy problem)

Non-exhaustive list of Higgs decays

- [Implicit marriage of production modes and decay]
- Thus, NP can appear in any Higgs production/decay mode
- Yukawa-mediated two-body decays
 - bb, cc, ττ, μμ, ee (tt, ss, uu, dd)
- Vector coupling-induced decays
 - 4l, lvlv, lvqq
- Loop-induced decays
 - gg, γγ, Ζγ
- Rare decays
 - $J/\psi \gamma$, Yy, $\varphi \gamma$

Non-exhaustive list of Higgs decays

- [Implicit marriage of production modes and decay]
- Thus, NP can appear in any Higgs production/decay mode
- Yukawa-mediated two-body decays Test Yukawa patterns, CPV phases - bb, cc, $\tau\tau$, $\mu\mu$, ee (tt, ss, uu, dd)
- Vector coupling-induced decays
 - Test EWSB, probe VV unitarization, additional — 41, lvlv, lvqq Higgs states, CPV
- Loop-induced decays
 - gg, γγ, Ζγ
- Rare decays
 - $J/\psi \gamma$, $\Upsilon \gamma$, $\varphi \gamma$

Test new colored states, new EM charged states

Test Yukawa couplings, loop-induced couplings

Non-exhaustive list of Higgs decays

- [Implicit marriage of production modes and decay]
- Thus, NP can appear in any Higgs production/decay mode
- Yukawa-mediated two-body decays

- bb, cc, $\tau\tau$, $\mu\mu$, ee (tt, ss, uu, dd)

- Vector coupling-induced decays
 - 4l, lvlv, lvqq
- Loop-induced decays
 - gg, γγ, Ζγ
- Rare decays
 - $J/\psi \gamma$, Yy, $\varphi \gamma$

Schopf, Arnold, Sauerburger, Tzovara, Cardini

Aggarwal

Gillwald

Example: Motivating non-standard Yukawas

- Effective dim-6 operator correction for Yukawas
 - $\mathcal{L} \supset -y_u \bar{Q}_L \tilde{H} u_R y'_u \frac{|H|^2}{\Lambda^2} \bar{Q} \tilde{H} u_R y_\ell \bar{L} H \ell_R y'_\ell \frac{|H|^2}{\Lambda^2} \bar{L} H \ell_R$ - $y_d \bar{Q}_L H d_R - y'_d \frac{|H|^2}{\Lambda^2} \bar{Q} H d_R + \text{h.c.}$ - Diagonalize the mass combinations $m_f = \frac{y_f v}{\sqrt{2}} + \frac{y'_f v^3}{2\sqrt{2}\Lambda^2}$
- Resulting Yukawa interactions are not necessarily diagonal, or CP-conserving

$$\frac{y_{f, \text{ eff}}}{\sqrt{2}} = \frac{y_f}{\sqrt{2}} + \frac{3y'_f v^2}{2\sqrt{2}\Lambda^2} = \frac{m_f}{v} + \frac{2y'_f v^2}{2\sqrt{2}\Lambda^2}$$

- Depends sensitively on symmetries assumed at dim-6
 - Fine-tune mass generation \leftrightarrow large BSM effects

New Physics Lamppost

- Two categories of searches: SM vs. SM-ish decays
 - SM Higgs decay: target sensitivity is nonzero SM prediction
 - SM-ish Higgs decay: target is testing a SM zero
 - Flavor-violating decay, CPV, exotic decay
- Logic also valid for production modes! FY [1404.2924]
 - SM vs. SM-ish production modes also need testing
 - Current framework uses STXS

In Higgs physics, any SM zero is readily *nonzero* in a NP model

Summary

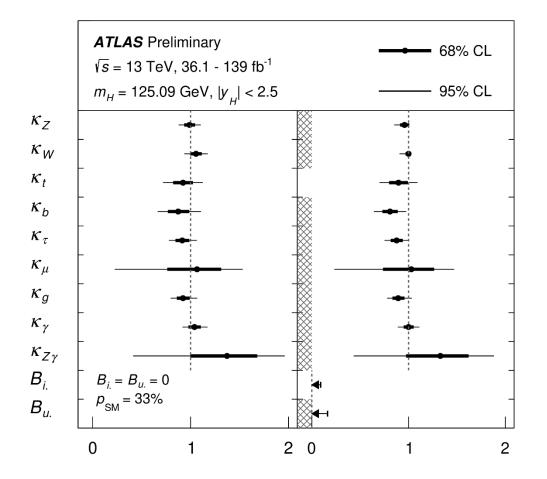
- Rich and diverse program of post-discovery studies of Higgs properties at LHC
 - Mass, spin/parity, couplings, width, exotic production
 modes, exotic decay modes
 Exotic decay h → aa: Rodriguez, Hoefer (BSM session)
- Boundless set of experimental measurements, and every measurement is an opportunity to refute the SM
 - Not addressed: к-framework, EFT approach
 - Forthcoming highlight: HH studies HH results: Veatch, Deutsch
- Patterns of deviations from data will point the path to new physics scales

Motivating patterns of characteristic deviations: EFT vs. UV-complete

- Assume no light degrees of freedom, use effective operators for Higgs characterization
 - HEFT and SMEFT approaches differ in scope, but patterns of deviations require assumptions belying model dependence, symmetry assumptions for NP
 - dim-6: 76 vs. 2499 operators (global B, L conservation, one vs. three fermion generations)
 Buchmuller, Wyler NPB 268 (1986) 621 Grzadkowski, Iskrzynski, Misiak, Rosiek [1008.4884]
 Alonso, Jenkins, Manohar, Trott [1312.2014]
 - e.g. SILH basis Giudice, Grojean, Pomarol, Rattazzi [hep-ph/0703164] Liu, Pomarol, Rattazzi [1603.03064]
- Adopt concrete, robust models

- SM+singlet, 2HDM, G-M, MSSM, composite Higgs, ...

Current status

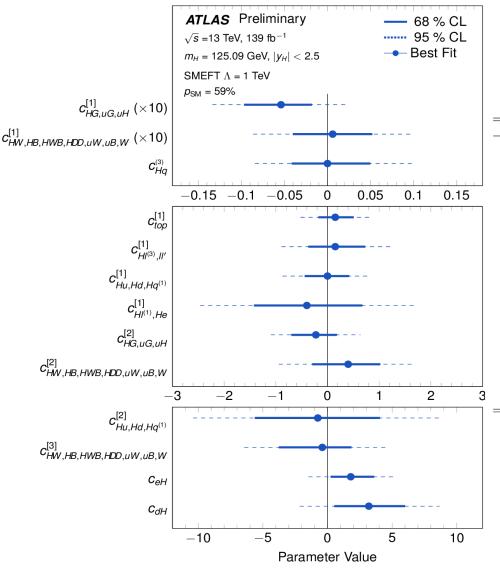

	ATLAS	Preliminary	_ · · · ·				Total S		
	√ <i>s</i> = 13 TeV,	139 fb ⁻¹	B _{γγ} /B _{ZZ} .			1.09	+0.14	+0.12 , ±0.06	
		GeV, y _H < 2.5	B ₆₈ /B ₂₂ .			0.78	+0.28	+0.23 +0.16)
	p = 92%		B _{WW} /B _{ZZ} .		-	1.06	+0.14	+0.11 +0.09	
		21.1	B _{TT} /B _{ZZ*}	H.		0.86	+0.16	+0.12 +0.10	эП
	Total Stat.		L <u>.</u>	0.5		1.5	-0.14 (-0.10 - 0.03	ĹΙ
	Sysi.	SM	0	0.5	1	1.5		Stat. Syst.	_
	$gg \rightarrow H \times B_{Z^*}$	0-jet, $p_{\tau}^{H} < 10 \text{ GeV}$ 0-jet, $10 \le p_{\tau}^{T} < 200 \text{ GeV}$ 1-jet, $p_{\tau}^{H} < 60 \text{ GeV}$ 1-jet, $60 \le p_{\tau}^{T} < 120 \text{ GeV}$ 1-jet, $120 \le p_{\tau}^{H} < 200 \text{ GeV}$ 2-jet, $m_{\eta} < 350 \text{ GeV}, p_{\tau}^{H} < 60 \text{ GeV}$				0.89 1.14 0.57 1.06 0.66	$\begin{array}{c} + 0.22 \\ - 0.20 \\ + 0.15 \\ - 0.14 \end{array} (\\ \pm 0.28 \\ - 0.27 \\ + 0.27 \\ + 0.41 \\ - 0.39 \end{array} (\end{array}$	$\begin{array}{c} + 0.19 & + 0.11 \\ - 0.18 & - 0.10 \\ \pm 0.12 & + 0.09 \\ - 0.07 & + 0.22 \\ - 0.21 & , \pm 0.18 \\ + 0.25 & + 0.13 \\ - 0.24 & - 0.12 \\ + 0.36 & + 0.19 \\ - 0.35 & - 0.17 \end{array}$) ()))
		$\begin{split} & = 2 \operatorname{-jent} m_{\tilde{g}} < 350 \operatorname{GeV}, p_{T} < 360 \operatorname{GeV}, \\ & \geq 2 \operatorname{-jet}, m_{\tilde{g}} < 350 \operatorname{GeV}, 60 \leq p_{T}^{H} < 120 \operatorname{GeV} \\ & \geq 2 \operatorname{-jet}, m_{\tilde{g}} < 350 \operatorname{GeV}, 120 \leq p_{T}^{H} < 200 \operatorname{GeV} \\ & \geq 2 \operatorname{-jet}, m_{\tilde{g}} \geq 700 \operatorname{GeV}, p_{T}^{H} < 200 \operatorname{GeV} \\ & \geq 2 \operatorname{-jet}, m_{\tilde{g}} \geq 700 \operatorname{GeV}, p_{T}^{H} < 200 \operatorname{GeV} \\ & 200 \leq p_{T}^{H} < 300 \operatorname{GeV} \\ & 300 \leq p_{T}^{H} < 450 \operatorname{GeV} \\ & p_{T}^{H} \geq 450 \operatorname{GeV} \\ & p_{T}^{H} \geq 450 \operatorname{GeV} \end{split}$			H	0.47 0.25 0.54 2.76 0.74 1.06 0.65 1.86	± 0.53 (+0.44 -0.42 (+1.11 -1.04 (+1.54 -1.43 (+0.35 ($\begin{array}{c} \pm 0.98 \begin{array}{c} +0.47 \\ -0.39 \end{array} \\ \pm 0.46 \begin{array}{c} \pm 0.28 \\ -0.39 \end{array} \\ -0.36 \end{array} \\ -0.36 \end{array} \\ -0.36 \end{array} \\ -0.22 \\ -0.93 \end{array} \\ -0.45 \\ -0.93 \\ -0.45 \\ -0.42 \end{array} \\ -0.45 \\ $;))))
	$qq \rightarrow Hqq \times B_{ZZ}$.	$ \begin{split} &\leq 1\text{-jet} \\ &\geq 2\text{-jet}, \ m_g < 350 \ \text{GeV}, \ VH \ \text{veto} \\ &\geq 2\text{-jet}, \ m_g < 350 \ \text{GeV}, \ VH \ \text{topo} \\ &\geq 2\text{-jet}, \ m_g < 350 \ \text{GeV}, \ VH \ \text{topo} \\ &\geq 2\text{-jet}, \ 350 \le m_g < 700 \ \text{GeV}, \ p_{\tau}^H < 200 \ \text{GeV} \\ &\geq 2\text{-jet}, \ 700 \le m_g < 1000 \ \text{GeV}, \ p_{\tau}^H < 200 \ \text{GeV} \\ &\geq 2\text{-jet}, \ 1000 \le m_g < 1500 \ \text{GeV}, \ p_{\tau}^H < 200 \ \text{GeV} \\ &\geq 2\text{-jet}, \ m_g \ge 1500 \ \text{GeV}, \ p_{\tau}^H < 200 \ \text{GeV} \\ &\geq 2\text{-jet}, \ m_g \ge 350 \ \text{GeV}, \ p_{\tau}^H \ge 200 \ \text{GeV} \end{split} $	/ •		— •	1.40 2.98 1.00 0.33 0.95 1.38 1.15 1.21	+ 1.64 (- 1.52 (+ 0.58 (- 0.52 (+ 0.49 (+ 0.49 (+ 0.71 (+ 0.57 (+ 0.57 (+ 0.39 (- 0.39 ($\begin{array}{cccc} + 0.40 \\ - 0.93 & - 0.35 \\ + 1.46 & + 0.75 \\ - 1.37 & - 0.66 \\ - 0.47 & - 0.23 \\ + 0.44 & + 0.22 \\ - 0.41 & - 0.24 \\ + 0.62 & + 0.35 \\ - 0.41 & - 0.24 \\ + 0.62 & + 0.35 \\ - 0.57 & - 0.31 \\ + 0.35 & + 0.18 \\ - 0.32 & - 0.14 \\ + 0.35 & + 0.18 \\ - 0.32 & - 0.14 \\ - 0.32 & - 0.14 \\ - 0.24 & - 0.12 \\ \end{array}$)))))
	qq→Hiv×B _{ZZ*} .	$\begin{split} p_{T}^{\nu} < 75 \text{ GeV} \\ 75 &\leq p_{T}^{\nu} < 150 \text{ GeV} \\ 150 &\leq p_{T}^{\nu} < 250 \text{ GeV} \\ 250 &\leq p_{T}^{\nu} < 400 \text{ GeV} \\ p_{T}^{\nu} &\geq 400 \text{ GeV} \end{split}$				2.47 1.64 1.42 1.36 1.91	+0.99 -0.80 +0.74 -0.58 +0.72 -0.53	$\begin{array}{c} +1.15 & +0.22 \\ -1.02 & -0.12 \\ +0.97 & +0.20 \\ -0.79 & -0.12 \\ +0.61 & +0.42 \\ -0.48 & -0.33 \\ +0.63 & +0.35 \\ -0.48 & -0.22 \\ +1.22 & +0.79 \\ -0.95 & -0.50 \end{array}$)))
	gg/qq→Hll × B _{zz} ,	$\begin{array}{c} p_{\tau}^{\nu} < 150 \; \mathrm{GeV} \\ 150 \leq p_{\tau}^{\nu} < 250 \; \mathrm{GeV} \\ 250 \leq p_{\tau}^{\nu} < 400 \; \mathrm{GeV} \\ p_{\tau}^{\nu} \geq 400 \; \mathrm{GeV} \end{array}$		∎ ∎ -		0.21 1.30 1.28 0.39	+ 0.63 - 0.46 (+ 0.73 - 0.54 ($\begin{array}{c} \pm 0.54 & +0.46 \\ -0.53 & +0.53 \\ +0.53 & +0.34 \\ -0.41 & -0.22 \\ +0.64 & +0.36 \\ -0.48 & -0.23 \\ +1.04 & +0.74 \\ -0.91 & -0.68 \end{array}$)
	tĨH×B _{Z2*}	$\begin{array}{l} p_{T}^{H} < 60 \; \mathrm{GeV} \\ 60 \leq p_{T}^{H} < 120 \; \mathrm{GeV} \\ 120 \leq p_{T}^{H} < 200 \; \mathrm{GeV} \\ 200 \leq p_{T}^{H} < 300 \; \mathrm{GeV} \\ 300 \leq p_{T}^{H} < 450 \; \mathrm{GeV} \\ p_{T}^{H} \geq 450 \; \mathrm{GeV} \end{array}$) }(0.75 0.69 0.86 0.96 0.28 0.16	- 0.66 (+ 0.53 (+ 0.55 (+ 0.55 (+ 0.62 (+ 0.79 ($\begin{array}{c} +0.72 & +0.29 \\ -0.63 & -0.21 \\ +0.49 & +0.20 \\ -0.42 & -0.15 \\ +0.50 & +0.23 \\ -0.43 & -0.19 \\ +0.56 & +0.25 \\ -0.48 & -0.20 \\ +0.66 & +0.43 \\ -0.59 & -0.38 \\ +1.44 & +1.28 \\ -1.24 & -1.25 \end{array}$))))
	$tH \times B_{ZZ^*}$					2.90	+ 3.63 - 2.87 (+ 3.35 + 1.39 - 2.73 *- 0.89)
E	- 8 –	6 -4 -2	0	2	4	6	8	1	0

ATLAS-CONF-2021-053

Felix Yu – SM Higgs Physics and BSM E

Parameter normalised to SM value

Current K-framework measurements


ATLAS-CONF-2021-053

Current K-framework measurements

Production	Tana	Main	Effective	Resolved modifier		
cross section	Loops	interference	modifier	Resolved modifier		
$\sigma(\text{ggF})$	\checkmark	t-b	κ_g^2	$1.040\kappa_t^2 + 0.002\kappa_b^2 - 0.038\kappa_t\kappa_b - 0.005\kappa_t\kappa_c$		
$\sigma(\text{VBF})$	-	-	-	$0.733 \kappa_W^2 + 0.267 \kappa_Z^2$		
$\sigma(qq/qg \to ZH)$	-	-	-	κ_Z^2		
$\sigma(gg\to ZH)$	\checkmark	t-Z	$\kappa_{(ggZH)}$	$2.456 \kappa_Z^2 + 0.456 \kappa_t^2 - 1.903 \kappa_Z \kappa_t \\ - 0.011 \kappa_Z \kappa_b + 0.003 \kappa_t \kappa_b$		
$\sigma(WH)$	-	-	-	κ_W^2		
$\sigma(H)$	-	-	-	κ_t^2		
$\sigma(tHW)$	-	t–W	-	$2.909\kappa_t^2 + 2.310\kappa_W^2 - 4.220\kappa_t\kappa_W$		
$\sigma(tHq)$	-	t–W	-	$2.633 \kappa_t^2 + 3.578 \kappa_W^2 - 5.211 \kappa_t \kappa_W$		
$\sigma(H)$	-	-	-	κ_b^2		
Partial decay wid	th					
Γ^{bb}	-	-	-	κ_b^2		
Γ^{WW}	-	-	-	κ_W^2		
Γ^{gg}	\checkmark	t- b	κ_q^2	$1.111 \kappa_t^2 + 0.012 \kappa_b^2 - 0.123 \kappa_t \kappa_b$		
$\Gamma^{\tau\tau}$	-	-	-	$\kappa_{ au}^2$		
Γ^{ZZ}	-	-	-	κ_Z^2		
Γ^{cc}	-	-	-	$\kappa_c^2 \ (= \kappa_t^2)$		
				$1.589\kappa_W^2 + 0.072\kappa_t^2 - 0.674\kappa_W\kappa_t$		
$\Gamma^{\gamma\gamma}$	\checkmark	t–W	κ_{γ}^2	$+0.009 \kappa_W \kappa_ au + 0.008 \kappa_W \kappa_b$		
			,	$-0.002 \kappa_t \kappa_b - 0.002 \kappa_t \kappa_\tau$		
$\Gamma^{Z\gamma}$	\checkmark	t–W	$\kappa^2_{(Z\gamma)}$	$1.118\kappa_W^2 - 0.125\kappa_W\kappa_t + 0.004\kappa_t^2 + 0.003\kappa_W\kappa_b$		
Γ^{ss}	-	-	-	$\kappa_s^2 \ (= \kappa_b^2)$		
$\Gamma^{\mu\mu}$	-	-	-	κ_{μ}^2		
Total width $(B_{i.} = B_{u.} = 0)$						
Γ_H		-	κ_{H}^{2}	$\begin{aligned} & 0.581 \kappa_b^2 + 0.215 \kappa_W^2 + 0.082 \kappa_g^2 \\ & + 0.063 \kappa_\tau^2 + 0.026 \kappa_Z^2 + 0.029 \kappa_c^2 \\ & + 0.0023 \kappa_\gamma^2 + 0.0015 \kappa_{(Z\gamma)}^2 \\ & + 0.0004 \kappa_s^2 + 0.00022 \kappa_\mu^2 \end{aligned}$		

ATLAS-CONF-2021-053

EFT Interpretation

Wilson coefficient	Operator	Wilson coefficient	Operator
$c_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	c_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$
c_{HDD}	$\left(H^{\dagger}D^{\mu}H ight)^{*}\left(H^{\dagger}D_{\mu}H ight)$	c_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$
c_{HG}	$H^\dagger HG^A_{\mu u}G^{A\mu u}$	C_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$
c_{HB}	$H^\dagger H B_{\mu u}B^{\mu u}$	c'_{ll}	$(\bar{l}_p \gamma_\mu l_t) (\bar{l}_r \gamma^\mu l_s)$
c_{HW}	$H^{\dagger}H W^{I}_{\mu u}W^{I\mu u}$	$c_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_t) (\bar{q}_r \gamma^\mu q_s)$
c_{HWB}	$H^{\dagger} au^{I} H W^{I}_{\mu u} B^{\mu u}$	$c^{(1)}_{oldsymbol{q}oldsymbol{q}}_{oldsymbol{q}oldsymbol{q}}_{oldsymbol{q}oldsymbol{q}}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$
c_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	c_{qq}	$(\bar{q}_p \gamma_\mu q_t) (\bar{q}_r \gamma^\mu q_s)$
c_{uH}	$(H^{\dagger}H)(\bar{q}_p u_r \widetilde{H})$	$c_{qq}^{(31)}$	$(\bar{q}_p\gamma_\mu\tau^I q_t)(\bar{q}_r\gamma^\mu\tau^I q_s)$
c_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r \widetilde{H})$	c _{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$
$c_{Hl}^{\scriptscriptstyle (1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$	$c_{uu}^{(1)}$	$(\bar{u}_p \gamma_\mu u_t)(\bar{u}_r \gamma^\mu u_s)$
$c_{Hl}^{\scriptscriptstyle (3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	$C_{qu}^{(1)}$	$(\bar{q}_p\gamma_\mu q_t)(\bar{u}_r\gamma^\mu u_s)$
c_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	$c_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$
$c_{Hq}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	$C_{qu}^{(8)}$	$(\bar{q}_p\gamma_\mu T^A q_r)(\bar{u}_s\gamma^\mu T^A u_t)$
$c_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	$c_{qd}^{\scriptscriptstyle (8)}$	$(\bar{q}_p\gamma_\mu T^A q_r)(\bar{d}_s\gamma^\mu T^A d_t)$
c _{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	c_W	$\epsilon^{IJK}W^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$
c_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	c_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$

ATLAS-CONF-2021-053

Felix Yu – SM Higgs Physics and BSM Effects

EFT Interpretation

Model Parameter Observed		Expected				
$(\Lambda = 1 \text{ TeV})$	Best-fit	68% CI	95% CI	68% CI	95% CI	
$c_{Hq}^{\scriptscriptstyle (3)}$	0.0	[-0.04, 0.05]	[-0.08, 0.1]	[-0.04, 0.05]	[-0.08, 0.09]	-
C _{dH}	3.2	[0.5, 6]	[-2.1,9]	[-2.7, 2.7]	[-5, 5]	
C _{eH}	1.8	[0.23, 4]	[-1.5, 5]	[-1.7, 1.7]	[-3.5, 3.2]	
$c_{HW,HB,HWB,HDD,uW,uB,W}^{[1]}$	0.001	[-0.004, 0.005]	[-0.009, 0.01]	[-0.005, 0.004]	[-0.009, 0.009]	
$c_{HW,HB,HWB,HDD,uW,uB,W}^{[2]}$	0.4	[-0.30, 1.0]	[-0.9, 1.7]	[-0.6, 0.6]	[-1.3, 1.3]	
$c_{HW,HB,HWB,HDD,uW,uB,W}^{[3]}$	-0.4	[-4, 1.9]	[-6, 5]	[-2.7, 2.8]	[-5, 6]	
$c^{[1]}_{Hl^{(1)},He}$	-0.4	[-1.4, 0.7]	[-2.5, 1.7]	[-1.0, 1.0]	[-2.0, 2.0]	
$c^{[1]}_{Hu,Hd,Hq^{(1)}}$	0.0	[-0.4, 0.4]	[-0.9, 0.8]	[-0.4, 0.4]	[-0.9, 0.8]	
$c^{[2]}_{Hu,Hd,Hq^{(1)}}$	-0.8	[-6,4]	[-10, 9]	[-5, 5]	[-10, 10]	
$c^{[1]}_{Hl^{(3)},ll'}$	0.15	[-0.4, 0.7]	[-0.9, 1.3]	[-0.5, 0.5]	[-1.0, 1.0]	
$c^{[1]}_{HG,uG,uH}$	-0.005	[-0.01, -0.0018]	[-0.013, 0.0021]	[-0.004, 0.004]	[-0.008, 0.008]	
$c^{[2]}_{HG,uG,uH}$	-0.23	[-0.7, 0.18]	[-1.1, 0.6]	[-0.4, 0.5]	[-0.9, 0.9]	
$c_{top}^{[1]}$	0.15	[-0.18, 0.5]	[-0.5, 0.8]	[-0.4, 0.4]	[-0.7, 0.7]	ATLAS-CO