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Why Measure Differential Cross Sections?

> Selected differential measurements sensitive to
many Higgs boson properties:

pγγT → ggF & perturbative QCD, Yukawa & BSM

couplings

|yγγ | → ggF & perturbative QCD, proton PDFs

∆φjj → Higgs boson spin & CP properties

…

> Better measurements constrain unknown physics!

> Measurements are almost model independent →
allow direct comparison to predictions

Source: ATLAS-CONF-2019-029
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Analysis Overview
Fiducial and differential cross sections in the H → γγ channel

> γγ excellent channel to work with

High photon selection efficiency

Excellent mγγ resolution → robust background subtraction

Balances low BR of 0.23%!

> Conf using full Run-2 dataset, 139.0 fb−1 at
√
s = 13 TeV

> Total cross section measured in inclusive fiducial region

> Differential measurement of six variables:

pγγT , |yγγ |, Njets, p
j1
T , mjj , ∆φjj

> Two interpretations:

b and c Yukawa couplings
SMEFT
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Analysis Strategy

> Measure differential cross section by
simultaneously fitting the mγγ

distributions in all bins of a variable

→ Get signal σ ×Br and background yield
for every bin

> Fit uses analytical S and B shape
parametrizations

Need to choose a background function for

each bin → Background modelling

> Systematic uncertainties shared

between all bins of a variable

> Unfold detector effects for easier

cross-experiment & theory comparison

Source: ATLAS-CONF-2019-029
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Background Model
Strategy

> Parametrize total background component with
simple analytical function

But which functional form should be used?

→ Build background template closely matching data

Used to determine the background functional form

for the final S +B fit

Not used to determine the background function

parameters
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→ Need shapes & fractions of all background sources to build complete template

> Smooth background templates using Gaussian Process Regression (GPR)

> Background model bias studies

Estimate potential impact of background model choice on signal yield: spurious signal

(SS)

Background function selection
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Background Model
Template Building

> Backgrounds are continuous non-resonant γγ
(irreducible) and γj, jj (reducible)

> Build background template by adding different
background distributions:

γγ shape from γγ MC simulation

γj shape from data control region

jj neglected (no impact on template shape)

> Relative background fractions from data

Control regions defined by inverting the selection

criteria for each γ separately

> Inclusive fiducial composition typically γγ ∼76%,

γj ∼21%, jj ∼3%

Source: 1802.04146v2
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Background Model
Spurious Signal: Potential bias on σ ×Br
by background model choice

> A good background model describes the data
well, with only small bias on the extracted σ ×Br
value

Evaluate goodness-of-fit (χ2) and SS of each

considered function

Considered functions: Exp(polynomial O(1,2,3)),
Bernstein polynomials O(3,4,5), Power Law

> SS is evaluated by S +B fits to the

background-only template: 17 fits scanning

mγγ ∈ [121, 129] GeV, max(S) chosen as SS

> Choose function with lowest #d.o.f. passing SS and χ2 criteria

> Spurious signal used as systematic uncertainty in final data fit
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Results
Selected Highlights

> Spectrum probed to

high pγγT values

> Provide differential

variables for precise

theory comparisons

> Provide total cross

section measurement

> Overall good

agreement with SM

predictions
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κb and κc Interpretations
How to use differential measurements to

constrain physics beyond the SM

Source both plots: ATLAS-CONF-2019-029

> Consider overall rescaling of the

b/c-quark Yukawa couplings y with a
factor κb/c ∼ ymodifiedb/c /ySMb/c

> Constraints on κb and κc from measured

pγγT distribution (profile likelihood)
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EFT Interpretation

> SM EFT adding eight dimension-6
operators to SM Lagrangian

Basically (re-)combining SM operators to

higher orders

> Warsaw basis, new physics scale at

Λ = 1 TeV

> Limits obtained by likelihood fit to pγγT ,

Njets, mjj , ∆φjj and pj1T
> Limits are set on the dim-6 operators

Source: ATLAS-CONF-2019-029
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Summary

> Differential cross section measurements provide

a precision view into Higgs boson properties,

possible BSM physics, and physics modelling

> H → γγ is an excellent channel for such
measurements

Good mγγ resolution and selection efficiency

> A reliable background model is essential for the

H → γγ analysis

> Measurements show good agreement with SM

predictions, with ∼ 11% precision

> Looking forward to include more variables and to

combine different channels!
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How to produce Higgs bosons at the LHC...

> Four major production modes:

Gluon-gluon fusion (ggF), vector boson

fusion (VBF), W/Z Strahlung, top-quark

associated production

> ggF dominating, then VBF,

VH(WH/ZH), ttH

Mode Cross section [pb]

ggF 48.61

VBF 3.766

WH 1.358

ZH 0.880

ttH 0.507

Source: LHCHXSWG
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...and how they decay

> H dominantly decays into bb̄

> Next WW , gg, ττ

> Decay into gg and γγ only possible via
loops (massless particles!)

> Decay into photons (γγ) relatively
suppressed, BR ∼ 0.227%

> γγ still excellent channel to work with

High photon selection efficiency

Excellent mγγ resolution

→ robust background subtraction

Balances low BR!
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Event Selection & Fiducial Region

> Harmonize truth and reconstruction cuts as much as possible

Avoid acceptance effects: reduces model dependencies

Photon and Event Selection

> Two energetic, isolated, central γ

> mγγ ∈ [105, 160] GeV – most signal in

[120, 130] GeV

> Neural network selects γγ vertex: better
four-momentum and mγγ resolution, jet

association

Jet Selection

> Central R = 0.4 anti-kt jets

> Jet vertex tagger to suppress pileup

> Overlap removal: prioritize e, γ over jets
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Electron and Photon ID

> Shapes of the showers in the electromagentic (EM) calorimeter used for e and γ ID

> Shapes can be sorted into four categories:

Track properties (e), lateral development, longitudinal development, track-cluster spatial
compatibility

> e ID: discriminate e from e from hadronic jets, converted γ, and e from heavy-flavour

hadrons

> γ ID: discriminate γ from hadronic jet backgrounds (bkd), π0 decays

> e ID constructs a likelihood discriminant from these, using data Z → ee (ET > 15
GeV) and J/Ψ → ee (ET < 15 GeV) tag and probes

> γ uses cut-based approach: MC Z → ``γ signal with data Z+jets bkd (10 < ET < 25)

GeV and inclusive-photon production MC with MC dijet bkd (ET > 25 GeV)
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Choice of Binnings

> Strategy: Start with fine binning, merge until

optimisation criteria satisfied

> Optimise variable binnings with respect to:

Expected significance & 2σ
Harmonization with categories in Higgs

couplings analysis (STXS), H → 4` and CMS
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Signal Extraction
Including Systematic Uncertainties in Likelihood Fits -- Profile Likelihood

> Systematics are due to imperfect knowledge of auxiliary parameters

> But we have some knowledge: θ = θ0 ±∆θ

> Modify likelihood function accordingly:

L(n, θ0︸︷︷︸
Observables

; µ, θ︸︷︷︸
Parameters

) =
∏

i∈bins
P(ni|µ, θ)×

∏
j∈syst

G(θ0j |θj ,∆θj)

> P is the probability of the observables given a model – i.e., the signal and

background model enter here!

> A priori knowledge interpreted as ”auxiliary measurement”

Implemented as constraint / penalty term, i.e. probability density function

Often Gaussian, interpreting ±∆θ as σ

DESYª | ATLAS H → γγ Differential Cross Section Measurements | Nils Gillwald | November 23, 2021 Page 19



Signal Model
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> Signal modelled by a double

sided Crystal Ball function (CB)

> Good description of the H
signal peak

> Signal shape fixed from fit to mH = 125 GeV MC

> mean + width of CB fixed, but can be effectively

modified by constrained energy scale and

resolution and Higgs mass nuisance parameters
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ABCD Sideband Method & use for Background Templates

> Invert γ isolation and ID in order to create signal and background enriched regions

> E.g., var1 = ID, var = iso

> A is signal regions, B, C, D background enriched

> IF var1 and var2 are uncorrelated, then

NA

NB
=

NC

ND
⇔ NA =

NBNC

ND

Source: Particle Wiki

⇒ Get an estimate on signal region from backround regions!

> Apply a similar method to H → γγ background decomposition, treating each photon
separately → 2x2D sideband method
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Background Model
Spurious Signal: Potential bias by background model choice

Aim: Estimate potential bias to S by background

model choice

> Run S +B fits on background template for all
considered models

9 steps for mγγ ∈ [123, 127] GeV

> Max(S) chosen as this model’s potential bias

> Accept model if:

S < 20% of expected background uncertainty, or

S < 10% of expected # signal events

If no model passes, use S ± x∆S : ∆S statistical

uncertainty of S, x ∈ {1, 2} can be further relaxed
p(χ2) for model on template sidebands > 1%

> Choose lowest d.o.f. model passing criteria

> Spurious signal scan, pγγT bin 7

> Functions: Exp(polynomial

O(1,2,3)), Bernstein
polynomials O(3,4,5), Power
Law
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Background Model
GPR Bias Study

> If we smooth our background templates, do we

spoil our spurious signal bias estimate?

> Strategy:

Assume a true background shape and throw

background template toys from it

Compare the spurious signal results on raw and

smoothed templates

If unbiased, mean value of distributions should

agree within uncertainties

> Examples from pγγT , bin 45 - 60 GeV

Based on this study, smoothing is unbiased!
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Unfolding in a nutshell
Removing Efficiency and Reconstruction Effects

The problem.

> Experiments measure detector-level

quantities

> Would need to run full reconstruction on
MC theory prediction

Cannot be done outside of ATLAS!

Difficult to compare results to updated

theoretical predictions

> Impossible to compare to analytical

theory predictions

The solution.

> Convert experimental data to ”truth

quantities”!

> More useful for theorists

> Easier comparison to MC generator

output

> Easier cross-experiment comparisons

> Don’t depend on knowledge on how to

run the detector simulation
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Unfolding in a nutshell, II
Removing Efficiency and Reconstruction Effects

> Different approaches to unfolding:

Bin-by-bin correction factor (top):

c = truth / reco

Matrix approach (bottom):

~ntruth = R−1 × ~nreco

> Each method has different strengths and

weaknesses

> Many more points, such as biases,

regularization (fixing problems with

matrix inversion), interpolations, model

dependence due to use of simulation, ...

> Our analysis uses the matrix approach

No regularization, directly in likelihood fit
Thanks to Carsten Burgard for the plots! They contain dummy data only.
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The Final Likelihood Function
in this Analysis

L
(
mγγ ; ν

sig, νbkg
)
=

m∏
i

e−ν

n!

n∏
j

νsig S (
mj

γγ ; θk
)︸ ︷︷ ︸

signal model PDF

+ νbkg B
(
mj

γγ

)︸ ︷︷ ︸
bkg model PDF


︸ ︷︷ ︸

product over all events in a mγγ bin︸ ︷︷ ︸
product over all bins of a variable

×
∏
k

Ck (θk; 0, 1)︸ ︷︷ ︸
nuisance parameter constraints

,

where νsigi =
∑
l

RilσlBγγ · Lint

> Ril is the response matrix used for the unfolding, n
detector
i = Riln

particle
j

> σlBγγ is the cross section in bin l times the H → γγ BR
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The LHC

> Operating since 2008

> 27 km long, pp collisions at
√
s = 13 TeV

(since 2015)

> ATLAS peak luminosity: 2.14× 1034

cm−2s−1

> 2808 bunches, ∼ 1011 protons each;
temporal spacing 25 ns

> Main experiments: ATLAS/CMS

(multi-purpose), LHCb (b physics / CP),
ALICE (heavy ions / qg-plasma)

DESYª | ATLAS H → γγ Differential Cross Section Measurements | Nils Gillwald | November 23, 2021 Page 27



The ATLAS experiment

> 44 × 25 m, 7000 t

> Divided into barrel and end-caps,

nearly 4π solid angle coverage

> Onion structure: Tracking layers,

EM and hadronic calorimeters,

muon chambers

> Magnets between layers bend

charged particles for easier

reconstruction and measurements

> Trigger selects interesting events

(∼1/40,000 or 0.0025%)
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Some thoughts on template
statistics: GPR Smoothing



Background Model
GPR Smoothing - Why it's needed

> H → γγ analysis has very small S/B ratio

> Rely on smooth background template to estimate
spurious signal (SS)

Model choice and associated SS very sensitive to

even small fluctuations in template

SS might just be large due to random fluctuation in

the generated distribution!

⇒ Suboptimal function choice, overestimated

systematic uncertainties

> Can’t just generate more background events -

already generated 1.025 billion!

> Use Gaussian Process Regression (GPR):

smooth out fluctuations for better background

model choice

Note: Black points are MC template, not data!!

Source: CERN-THESIS-2020-013
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Background Model
GPR Smoothing - What it is & how it works

> A Gaussian process (GP) is a set of
random variables xi where all subsets
have a multivariate normal distribution

All linear combinations of subsets are

Gaussian distributed

Correlations encoded in covariance

matrix Σ

> Fit GP by fitting µ, Σ to n supporting
points

Important to choose a good prior µ and Σ!

> For a histogram, supporting points would

be the single bins

> Can use fitted µ, Σ as smoothed version

of a distribution!

Σ =


σ0 c01 c02 . . . c0n
c10 σ1 c12 . . . c1n
. . . . . . . . . . . . . . .
cn0 cn1 cn2 . . . σn



Source: Rasmussen, Williams: Gaussian Processes for Machine Learning
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GPR: Choice of Prior - Kernels

> Choice of mean function depends on the distribution to model:

Constant, Linear, Exponential, ...

> Correlation matrix can be simplified by using a Kernel

Analytically describes level of correlation between two distinct points

> Different kinds of Kernels possible:

Radial Basis Function (RBF) Kernel:

k(xi, xj) = exp
(
− 1

2d(xi/l, xj/l)
2
)
with d Euclidian distance, l length scale

Gibbs Kernel (useful for smoothly falling distributions):

Like RBF, but l → l(x)

> Smoothing gets more agressive with increasing length scale

> Can also add a Kernel sensitive to the uncertainties of the supporting points

White Kernel: constant× Id(N)
Linear Error Kernel: Id(N) matrix with linearly decreasing values as a function of x
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