

Search for the • Higgs boson decay to charm quarks • at the ATLAS experiment

Hannah Arnold (Nik hef)

14th Annual Helmholtz Alliance Workshop on "Physics at the Terascale" November 23, 2021

Motivation

- **Yukawa couplings** the couplings of the Higgs boson to quarks and charged leptons are one potential source of **fermion masses**
- Prediction: $y_f \sim m_f$
- Observed for 3rd generation fermions, evidence for 2nd generation leptons
- Yukawa couplings provide *no fundamental insight into the fermion mass hierarchy* masses span orders of magnitude
 - \Rightarrow Need BSM physics to explain
- \Rightarrow Establishing and measuring the couplings of the Higgs boson with *all* fermions is a top priority

Next in line: Higgs-charm coupling – (only viable?) probe for 2^{nd-} generation quarks Yukawa coupling

Introduction: *VH*, $H \rightarrow cc$

Nikhef

$H \rightarrow cc$ - unique opportunity to directly probe and constrain the Higgs-charm coupling

- Largest contribution to the Higgs total width that we don't have evidence for yet
- Experimentally challenging:
 - *c*-tagging
 - *V*(=*W*/*Z*)*H* **production and** *V*(→*leptons*) for (multijet) background suppression and triggering

VH, $H \rightarrow cc$ results

- 2021: ATLAS analysis on the full Run-2 dataset (139 fb⁻¹) [<u>ATLAS-CONF-2021-021</u>] ⇒ focus of this talk
- 2019: CMS search on partial Run-2 dataset (36 fb⁻¹) [JHEP 03 (2020) 131]
 - Obs. (exp.) upper limit on σ×BR @ 95% C.L.: **70 (36)** × **SM prediction**
- 2018: ATLAS $Z(\rightarrow ll)H(\rightarrow cc)$ search on partial Run-2 dataset (36 fb⁻¹) [PRL 120 (2018) 211802]
 - Obs. (exp.) upper limit on $\sigma \times BR$ @ 95% C.L.: **110 (150)** × **SM prediction**

3

c-tagging

- identification of jets that likely contain a c-hadron

Current *c***-tagging strategy:**

- Rely on the "low-level" **algorithms** developed for *b***-tagging**
- The "high-level" algorithms that combine the low-level tagger output into final discriminants using multivariate analysis techniques are used to identify *c*-jets as signal and *b* and light-jets as background

Selection of "low-level" *b*-tagging algorithms

c-tagging for $VH(\rightarrow cc)$

Dedicated 2D tagging strategy:

i. Including *b*-tag veto \rightarrow orthogonality with $VH(\rightarrow bb) \Rightarrow$ combination?

ii. Optimised for $VH(\rightarrow cc)$ limit

Average performance (on ttbar)

c-jets	<i>b</i> -jets	Light jets
27%	8%	1.6%

For comparison: a typical *b*-tagging algorithm achieves a *b*-jet efficiency of ~70% for similar *c*-/light jet mistag efficiencies

 \Leftarrow Dedicated calibration for *c*-, *b*- and light jets using "standard" b-tagging calibration methods^(*)- uncertainties: **at most 15%**

jet p_T [GeV] (*) <u>Eur. Phys. J. C79(2019) 970</u>, <u>ATLAS-CONF-2018-001</u>, <u>ATLAS-CONF-2018-006</u>

Search for the Higgs decay to c-quarks with ATLAS

250

23/11/21

$VH(\rightarrow cc)$ analysis strategy

Nikhef

Three lepton channels: 0/1/2L - according to number of reconstructed electrons/muons

 \Rightarrow electrons, muons and/or missing transverse momentum (Etmiss)

Cut-based analysis with m(jj) as final discriminant

• m(jj): invariant mass of the two p_T-leading jets

1 and 2 c-tag categories

- c-tag includes b-veto
- b-tag veto on additional jets

⇒ Orthogonality to VH(→ bb)

Further categorisation: $p_{T}(V)$ and # of jets \Rightarrow isolate regions with better S/($\sqrt{}$)B

Hannah Arnold

Search for the Higgs decay to c-quarks with ATLAS

$VH(\rightarrow cc)$ analysis strategy II

Background estimate

- **From** *simulated samples* exception: multijet contribution in 1L (negligible in 0/2L (after selection))
- *Truth-flavour tagging* ⇒ maximise the statistical power *weight* events with the tagging (in-)efficiency of the Higgs-candidate jets
- **Systematic uncertainties** from comparisons to alternative samples
- **Various control regions in data** ⇒ determine **normalisation** and constrain modelling uncertainties

Signal extraction – 3 POI fit

Binned profile likelihood fit in m(jj) simultaneously in 42 regions

- $VH(\rightarrow cc)$
- $VW(\rightarrow cl)$ • $VZ(\rightarrow cc)$
- cross-check signals ⇒ validate analysis strategy

Large and diverse background contributions: Z+jets, W+jets, top

Search for the Higgs decay to c-quarks with ATLAS

Control regions

Nikhef

V+jets background (V = W, Z)

Top background

Search for the Higgs decay to c-quarks with ATLAS

Summary: analysis regions

Courtesy of M. Mironova

Hannah Arnold

Search for the Higgs decay to c-quarks with ATLAS

23/11/21

Most sensitive signal region in each channel: 2 *c*-tag, 2 jet, $p_T(V) > 150 \text{ GeV}$

Expected signal × 300

Search for the Higgs decay to c-quarks with ATLAS

Nik|hef

Results: signal strengths

Compatibility with the SM: 84%

Good agreement with SM prediction \Rightarrow validation of *VH*(\rightarrow *cc*) search strategy

More $VH(\rightarrow cc)$ results

Individual channel results from POI decorrelation (i.e. otherwise fit model unchanged)

- Good agreement between channels
- **0L most sensitive channel** (high stat. + bkg. Control from 1/2L)

Most stringent limit on $H \rightarrow cc$ to date!

Uncertainties breakdown

Source of uncertainty		$\mu_{VH(c\bar{c})}$
Total		15.3
Statistical		10.0
Systematics		11.5
Statistical uncertaint	ties	
Data statistics only		7.8
Floating normalisations		5.1
Theoretical and mod	delling uncertainties	
$VH(\rightarrow c\bar{c})$		2.1
Z+jets		7.0
Top-quark		3.9
W+jets		3.0
Diboson		1.0
$VH(\rightarrow b\bar{b})$		0.8
Multi-Jet		1.0
Simulation statistics		4.2
Experimental uncert	tainties	
Jets		2.8
Leptons		0.5
E _T ^{miss}		0.2
Pile-up and luminosity		0.3
	c-jets	1.6
Flavour tagging	<i>b</i> -jets	1.1
Flavour tagging	light-jets	0.4
	au-jets	0.3
Truth-flavour tagging	ΔR correction	3.3
	⁸ Residual non-closure	1.7

Statistical and systematic uncertainties are of the same order

Uncertainties on the free-floating background normalisations are considered statistical unc.

Dominant systematic uncertainty: Z+jets modelling

Followed by uncertainties related to the **limited simulated sample sizes**

Interpretation of the result

 κ framework \Rightarrow study potential BSM modifications of the Higgs-boson coupling *strength*

K_c H **Higgs-charm coupling modifier** $\kappa_c = 1$ in SM

Assumptions:

- Modifications of the *partial decay width* by κ_c^2
- Modifications to the *total Higgs-boson total width*, assuming
 - Only decays to SM particles
 - All other coupling-strength modifiers are 1

Neglect modifications to the production because no ggZH parametrisation incl. κ_c is available

Search for the Higgs decay to c-quarks with ATLAS

u VH(cē)

$$\mu_{VH(c\bar{c})}(\kappa_c) = \frac{\kappa_c^2}{1 + B_{H \to c\bar{c}}^{\text{SM}}(\kappa_c^2 - 1)}$$

23/11/21

Parametrisation

14

Best fit value: $\kappa_c = 0$ (because of negative $\mu_{V(H \rightarrow cc)}$)

First direct constraint on κ_c ! @68% CL: $|\kappa_c| < 3.5 (4.9)$ obs. (exp.) @95% CL: $|\kappa_c| < 8.5 (12.3)$ obs. (exp.) Nik

Prospects: $VH(\rightarrow cc)$ @ the HL-LHC

Extrapolation based on the full Run-2 result

Assumptions

- $3000 \text{ fb}^{-1} \Rightarrow \sim 22 \times \text{more data}$ •
- Cross-sections increase by 1.10-1.18 due to increase of CoM • energy $(13 \rightarrow 14 \text{ TeV})$
- Most systematic uncertainties will reduce by 50%; • uncertainties due to limited simulated sample sizes will be negligible (!)

Results

Exp. signal strength: $\mu_{V(H \rightarrow cc)} = 1 \pm 2.0$ (stat.) ± 2.6 (syst.)

Exp. constraint @95% CL: $|\kappa_{\perp}| < 3.0$

- Results are systematically limited; by far dominant uncertainty: Z+jets modelling
 - Tested *different assumptions* regarding the systematic uncertainties: 5-10% changes on the limit each
- **Improved** *b***-(light)-jet** *c***-tagging rejections** by ×1.5 (3) thanks to the inner detector upgrade (Itk) \Rightarrow +10-15% improved limit (with the same DL1c tagger)

Search for the Higgs decay to c-quarks with ATLAS

23/11/21

ATLAS Preliminary ± 1σ Projection from Run 2 data ± 2σ √s=14 TeV. 3000 fb⁻¹ ---- Expected VH. $H \rightarrow c\overline{c}$ 0 lepton $Exp. = 8.1 \times SM$ 1 lepton $Exp = 11.2 \times SM$ 2 lepton $Exp. = 10.5 \times SM$ Combination $Exp.= 6.4 \times SM$ 15 5 10 20 95% C.L. limit on µ VH(cc)

ATL-PHYS-PUB-2021-039 Nil

Prospects: $VH(\rightarrow cc)$ @ the HL-LHC

Extrapolation based on the full Run-2 result

Assumptions

- $3000 \text{ fb}^{-1} \Rightarrow \sim 22 \times \text{more data}$ •
- Cross-sections increase by 1.10-1.18 due to increase of CoM • energy $(13 \rightarrow 14 \text{ TeV})$
- Most systematic uncertainties will reduce by 50%; • uncertainties due to limited simulated sample sizes will be negligible (!)

Results

Exp. signal strength: $\mu_{V(H \rightarrow cc)} = 1 \pm 2.0$ (stat.) ± 2.6 (syst.)

Exp. constraint @95% CL: $|\kappa| < 3.0$

- Results are systematically limited; by far dominant uncertainty: Z+jets modelling
 - Tested *different assumptions* regarding the systematic uncertainties: 5-10% changes on the limit each
- **Improved** *b*-(light)-jet *c*-tagging rejections by ×1.5 (3) thanks to the inner detector upgrade (Itk) \Rightarrow +10-15% improved limit (with the same DL1c tagger)

Search for the Higgs decay to c-quarks with ATLAS

23/11/21

ATL-PHYS-PUB-2021-039 Ni

Summary and conclusions

- Studying Higgs-charm coupling is among the most important open tasks in current Higgs physics
- Most promising approach to *directly* **probe the charm-Yukawa coupling** at the LHC: *VH*(→*cc*)
- ATLAS' full Run-2 $VH(\rightarrow cc)$ search provides
 - Most stringent limit on $H \rightarrow cc$ to date
 - First direct constraint on charm-Yukawa coupling
 - 'Measurement' of VW/VZ with *c*-tagging
- Measurements of $p_T(H)$ spectra in $H \rightarrow 4l$ (and $H \rightarrow \gamma\gamma$) provide **comparable** *indirect* **constraints on** κ_c
- HL-LHC extrapolation results promising
 - Significant work to reduce (modelling) uncertainties necessary

