Measurement of Higgs boson production cross sections in the di- τ decay channel with the ATLAS detector and the combination with other decay channels

FRANK SAUERBURGER November 23, 2021

Run: 299584 Event: 901388344 2016-05-20 17:40:04 CEST

Supervisors: Karsten Köneke, Christopher Young, Karl Jakobs

Motivation

[ATLAS-CONF-2021-053]

Spontaneous symmetry breaking and Yukawa interaction

$$\mathscr{L} \subset -rac{\sqrt{2}m_{ au}}{v} \left[(ar{f v}_{ au}\,ar{f au})_L \phi\, m au_R + ar{f au}_R \phi\, (m v_{ au}\,m au)_L
ight] \
ight.
onumber \
ightarrow \mathscr{L} \subset -m_{ au}\,ar{f au}\, au - rac{m_{ au}}{v}\,ar{f au}\, m auh$$

BURG

Introduction

Machine learning

esults

Combinatio

Conclusion

Production modes

Analysis targets four *H* production modes

BURG

Introduction **Higgs Boson Decay**

Analysis categories

[ATLAS-CONF-2021-044]

Analysis categories

[ATLAS-CONF-2021-044]

Introduction

Machine learning

Results

Combination

Conclusion

Analysis categories

[ATLAS-CONF-2021-044]

Introduction

BURG

ZW

Π.

Machine learning

Results

Combination

Conclusion

Background composition

Dominant backgrounds

Z ightarrow au au

- Monte Carlo simulation
- 70% overall, up to 90% in boosted
- Normalization from dedicated, embedded Control Regions

Misidentified τ

- Data-driven estimation
- Тор
 - Monte Carlo simulation
 - Dedicated Control Regions

NI REIBURG

> Introduction Machine learning Results Combination

```
Signal region composition with 100 \,\text{GeV} < m_{\tau\tau}^{\text{MMC}} < 150 \,\text{GeV}
```

```
[ATLAS-CONF-2021-044]
```

Missing mass calculator

- At least two neutrinos in the final state
- Individual contributions to E^{miss} not measured
- Perform likelihood scan using angles between measured particles and E^{miss}_T
- Find most probable Higgs boson mass m_{MMC}
- Most important discriminant

Introduction Machine learning Results Combination Conclusion

m

[ATLAS-CONF-2021-044]

Machine learning

Machine learning

VBF tagger

- Targeting VBF topology (two forward jets)
- Rejecting:
 ggF and $Z \rightarrow \tau \tau$
- Trained on jet kinematics

VH tagger

- Reject non-VH production modes
- Trained on jet and Higgs kinematics
- Targeted signal frac .:

Uncertaint

 $Z \rightarrow \tau \tau$

H-+ ## (0.92 - SM)

Other backgrounds

Misidentified a

Introductio

BURG

Machine learning

Results

Combination

Conclusion

140

120

100

Machine learning

- BDTs for *ttH*
 - Employ two BDTs
 - Reject tt and $Z \rightarrow \tau \tau$ background
 - Trained on jet, τ, H and E^{miss} properties
 - Define ttH_1 with rectangular cuts
 - ttH signal fraction in ttH_1: 92%

FRE

BURG

Introduction

Machine learning

Results

Combinatior

Conclusion

[ATLAS-CONF-2021-044]

Results

Measured cross sections

Measurements for different Parameters of Interest (Pol)

- Total cross section
- 2 Cross section per production mode
- 3 9 bins of STXS stage 1.2

Results are in agreement with the SM

REIBURG

Introduction Machine learning Results Combination

Total Cross section

[ATLAS-CONF-2021-044]

 $(\sigma \times BR)^{obs} = 2.90 \pm 0.21(stat) {}^{+0.37}_{-0.32}(syst) \, pb$

Measured cross sections

Measurements for different Parameters of Interest (Pol)

- Total cross section
- 2 Cross section per production mode
- 3 9 bins of STXS stage 1.2

Results are in agreement with the SM

Strong constraints on VBF cross-section

Observation of VBF process at 5.3σ

Introduction Machine learning Results Combination

BURG

ZW

Frank Sauerburger – ATLAS ${\it H} \rightarrow \tau \tau$ and Higgs combination

1

2D Scans

BURG

Measured cross sections

STXS measurement

Measurement in 9 bins of STXS stage 1.2

BURG

.....

Results

Combination

Conclusion

[ATLAS-CONF-2021-044]

Combination

κ Combination

Introduction

Introduction Machine learning Results Combination Conclusion

m

κ framework

- Zero-width assumption, decompose production and decay
- Scale coupling strengths with κ modifiers

$$\sigma_j o \kappa_j^2 \sigma_j^{
m SM} \quad \Gamma_j o \kappa_j^2 \Gamma^{
m SM}$$

For Standard Model, all $\kappa_j = 1$

VBF with coupling modifiers

κ Combination

Model 1: Fermion and gauge boson couplings

- $\blacksquare \kappa_V := \kappa_W = \kappa_Z$
- $\kappa_F := \kappa_t = \kappa_b = \kappa_\tau = \kappa_\mu$ Best-fit:

 $\kappa_V = 1.039^{+0.031}_{-0.030}$ $\kappa_F = 0.93 \pm 0.05$

Low *p*-value attributed to:

$$\begin{array}{ll} (\sigma \times \mathrm{BR})_{ttH+tH\,bb} &= 0.35^{+0.34}_{-0.33} \\ (\sigma \times \mathrm{BR})_{ggH\,\tau\tau} &= 0.87^{+0.23}_{-0.25} \end{array}$$

[ATLAS-CONF-2021-053]

Introduction Machine learning Results Combination Conclusion

BURG

ZW

κ Combination Model 2: Generic without BSM

- Generic "tree-level" model
- Loops assumed to be SM-like
- No invisible/undetected decays
- $\blacksquare \text{ Measure } \kappa_W, \kappa_Z, \kappa_t, \kappa_b, \kappa_\tau \text{ and } \kappa_\mu$

BURG

[ATLAS-CONF-2021-053]

κ Combination

Model 3: Tree-level plus BSM in loops

- Higgs mechanism: coupling ∝ mass
- Heavy BSM particles contributing to loops?
- Measure tree-level modifiers: $\kappa_W, \kappa_Z, \kappa_l, \kappa_b, \kappa_\tau$ and κ_μ
- Measure loop modifiers: κ_g , κ_γ , $\kappa_{\gamma Z}$
- Limits on invisible BSM decays

 \rightarrow No sign of BSM $B_{i.} < 0.09$ and $B_{u.} < 0.16$ at 95% CL

Introduction Machine learning Results Combination Conclusion

Conclusion

Conclusion

 \oslash Total measured $H \rightarrow au au$ cross section

 $2.90 \pm 0.21(\text{stat}) {}^{+0.37}_{-0.32}(\text{syst}) \,\text{pb}$

- STXS measurements in 9 bins
- \oslash Observation of VBF H
 ightarrow au au at 5.3 σ
- Improved precision[†] from 27% to 14%
- Combination with other Higgs decay channels
- → More precise measurements in future with refined analysis techniques and Run 3 dataset

wrt. Phys. Rev. D 99,072001 (2019)

[ATLAS-CONF-2021-044]

Introduction Machine learnin Results Combination Conclusion

JRG

Backup

Simplified embedding procedure

Motivation

Phase space mismatch between SR ($Z \rightarrow \tau \tau$) and CR ($Z \rightarrow \ell \ell$)

 \rightarrow How to define matching CR?

Procedure

In control region

- **Select** $Z \rightarrow \ell \ell$ events
- Unfold l reconstruction, identification and isolation effects
- 3 Scale p_ℓ by parametrized τ decay effects
- Reweight to account for efficiencies

BURG

Data-driven estimation of misidentified τ

lephad and $\tau_{had} \tau_{had}$

- Jets misidentified as τ_{had}
- Background estimated with fake factor method

$$N_{\mathsf{fake}}^{\mathsf{SR}} = (N_{\mathsf{Data}}^{\mathsf{anti-}\tau} - N_{\mathsf{MC, no jet}}^{\mathsf{anti-}\tau}) \times \mathscr{F}$$

 $au_e au_\mu$

- Misidentified leptons
- Data-driven matrix method

$$(N_{\text{tight/loose}}) = [\text{eff. matrix}](N_{\text{real/fake}})$$

For all channels Assign uncertainties O(5-30%)

November 23, 2021

BURG

ZW

Uncertainties

- Limited by systematic uncertainties
- Large theory uncertainties
- Largest exp. uncertainties from Jet/MET

Source of uncertainty	Impact on $\Delta \sigma / \sigma (pp \rightarrow H \rightarrow \tau \tau)$ [%]	
	Observed	Expected
Theoretical uncertainty in signal	8.1	8.6
Jet and $\vec{E}_{\rm T}^{\rm miss}$	4.2	4.1
Background sample size	3.7	3.4
Hadronic τ decays	2.0	2.1
Misidentified τ	1.9	1.8
Luminosity	1.7	1.8
Theoretical uncertainty in Top processes	1.4	1.2
Theoretical uncertainty in Z+jets processes	1.1	1.1
Flavor tagging	0.5	0.5
Electrons and muons	0.4	0.3
Total systematic uncertainty	11.1	11.0
Data sample size	6.6	6.3
Total	12.8	12.5

[ATLAS-CONF-2021-044]

Fit structure

- Normalization of Top background from Top control regions
- Normalization of $Z \rightarrow \tau \tau$ from kinematically embedded $Z \rightarrow \ell \ell$

[ATLAS-CONF-2021-044]

BURG

N

Partial Run 2 dataset

BURG