Measurement of the ratio $R_{K\pi\pi}$ with the LHCb experiment

14th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale" - Flavor physics session

J. Heuel, C. Langenbruch, S. Schael November 23rd, 2021

- SM: Electroweak interaction couples in the same way to all charged leptons
 - Well tested in K and π decays (e.g. $K \rightarrow \ell \nu$ [JHEP 1302 (2013) 048])
- + Flavor changing neutral currents (FCNC) $b \rightarrow s \ell \ell$
 - Forbidden in tree-level decays in the SM
 - Loop diagrams heavily suppressed
 - Highly sensitive to the presence of new heavy virtual particles
 - \Rightarrow Good probe for new physics

A precise test of LFU in the SM is the ratio

$$R_{H} = \frac{\mathcal{B}(B \to H\mu\mu)}{\mathcal{B}(B \to Hee)}, \text{ with } H = K^{+}, K^{*0}, \phi, \dots K^{+}\pi^{+}\pi^{-}$$
[Phys. Rev. D69 (2004) 074020]

- The ratios R_H are expected to be close to unity in the SM [JHEP 0712 (2007) 040]
- Hadronic uncertainties cancel

$R_{K\pi\pi}$

• Ratio of branching fractions of $B^+ \rightarrow K^+ \pi^+ \pi^- \ell^+ \ell^-$

• Control channel:

$$B^+ \to K^+ \pi^+ \pi^- J/\psi (\to \ell^+ \ell^-)$$

$$\cdot q^2 = m(\ell^+\ell^-)^2$$

Perform double ratio

- Resolution in electron mode deteriorated by Bremsstrahlung
- Data from Run1: 2011–2012 (3 fb⁻¹), and Run2: 2015–2018 (6 fb⁻¹)

Selection

$$R_{K\pi\pi} = \underbrace{\frac{N_{K^+\pi^+\pi^-\mu^+\mu^-}}{N_{K\pi\pi}(l/\psi \to \mu^+\mu^-)}}_{\text{determined by fit to selected data}} \cdot \underbrace{\frac{N_{K\pi\pi}(l/\psi \to \mu^+\mu^-)}{N_{K^+\pi^+\pi^-e^+e^-}}}_{\text{calculated from corrected simulation}} \cdot \underbrace{\frac{\epsilon_{K\pi\pi}(l/\psi \to \mu^+\mu^-)}{\epsilon_{K\pi\pi}(l/\psi \to e^+e^-)}}_{\text{calculated from corrected simulation}}$$

Pre-selection

- Fiducial cuts to exclude regions in which efficiency calculation are difficult ($p_{(T)}$, $m(K\pi\pi)$, ECAL regions)
- Require tracks of good quality
- PID variables are used to suppress mis-identified particles

Background from physical processes

- Partially reconstructed decays
- · Decays with one or two mis-identified particles

For example: Peaking background from $B^+ \rightarrow K^+ \pi^+ \pi^- J/\psi$ decays

- Mis-identification of one hadron and one lepton, e.g. $B^+ \rightarrow K^+ \pi^+_{\rightarrow \mu^+} \pi^- (J/\psi \rightarrow \mu^+_{\rightarrow \pi^+} \mu^-)$
- Vetoes on $m(K^+\ell^-)$, $m(\pi^{\pm}\ell^{\mp})$ with K^+ or the π^{\pm} reconstructed as muon or electron

- Suppress combinatorial background
- Boosted Decision Tree (LightGBM)
- Cross-validation (n = 10)
- Select input variables from set of well-simulated features by backward elimination
- Separate BDTs for electron and muon mode

Training data

- + Signal: $B^+ \rightarrow K^+ \pi^+ \pi^- \ell^+ \ell^-$ simulation (corrected)
- Background: Upper sideband $B^+ \rightarrow K^+ \pi^+ \pi^- \ell^+ \ell^-$ data Only combinatorial background, no significant contribution from physical background sources

Corrections to simulation and efficiencies

$$R_{K\pi\pi} = \underbrace{\frac{N_{K^+\pi^+\pi^-\mu^+\mu^-}}{N_{K\pi\pi}(J/\psi \to \mu^+\mu^-)}}_{\text{determined by fit to selected data}} \cdot \underbrace{\frac{\epsilon_{K\pi\pi(J/\psi \to \mu^+\mu^-)}}{\epsilon_{K^+\pi^+\pi^-\mu^+\mu^-}}}_{\text{calculated from corrected simulation}} \cdot \underbrace{\frac{\epsilon_{K\pi\pi(J/\psi \to \mu^+\mu^-)}}{\epsilon_{K\pi\pi(J/\psi \to e^+e^-)}}}_{\text{calculated from corrected simulation}}$$

UNIVERSITY

Need to calculate accurate efficiencies

 \Rightarrow Correct necessary distributions in simulation

Types of corrections to simulation

- 1. Correction of PID variables
- 2. Tracking efficiency correction
- 3. Reweighting of the $K^+\pi^+\pi^-$ system
- 4. Reweighting of B^+ production kinematics and multiplicity
- 5. Trigger efficiency corrections
- 6. Residual reconstruction differences
- 7. q^2 resolution correction

 \Rightarrow $B^+ \rightarrow K^+ \pi^+ \pi^- J/\psi$ as proxy for signal in data/MC comparison

- Difficult/computationally expensive to simulate because of large number of low momentum photons
- Take from clean data samples

Calibration samples

- + Leptons from J/ $\psi
 ightarrow \ell^+ \ell^-$
- K, π from $D^* \rightarrow \pi(D_0 \rightarrow K\pi)$

Tracking efficiency corrections

- Detector material not perfectly modeled
- Electron tracking efficiency controlled using tag & probe method on data
 - Channel: $B^+ \rightarrow K^+ (J/\psi \rightarrow e^+ e^-)$
 - Tag: electron and Kaon (long-tracks)
 - Probe: other electron reconstructed in the VELO
 - + binned in p_{T},η and ϕ
- Correction tables provided by tracking and alignment group [arXiv:1909.02957v2 hep-ex]

 B^+

Tag

Simulation generated using generic phase space model

Data-driven correction

- 1. Calculate efficiency maps from simulation
- 2. Unfold data to account for efficiency
- 3. Train BDT reweighter
- \Rightarrow 4. Accurately reproduce $K\pi\pi$ resonance structure in data

B⁺ production kinematics and multiplicity

- Minimize dependency on trigger category
 - Train on aligned data and simulation samples
 - Prior trigger correction
- Observables
 - p_T(B⁺)
 - · $\eta(B^+)$
 - nTracks

Trigger response not perfectly described in simulation

- Measure efficiencies on data and simulation of the resonant channel
- Calculate ratios in bins
- Apply as weight to simulation
- Validated using more abundant $B^+ \rightarrow J/\psi K^+$

Residual reconstruction differences

- Calculated on full selection, trigger categories, electrons and muons
- Variables

 - · $\chi^2_{\text{IP}}(B^+)$ · $\chi^2_{\text{vtx}}(B^+)/\text{ndof}$

q² correction

- · Detector material not perfectly modeled (Bremstrahlung)
- Resolution of m(J/ ψ) differs between simulation and data, while q^2 cut efficiency must be evaluated carefully

- Fit simulation (double CB shape) in Bremstrahlung categories
- Fit data (float scale on width, shift on mean and yields)
- Calculate corrected mass $m^{
 m corr}(J\!/\psi)$

 \cdot Calculate dilepton mass $m^{
m corr}(J/\psi)$ from fits to simulation and data

$$\begin{split} m^{\text{corr}}(J\!/\psi) &= m^{\text{true}} + s_{\sigma} \cdot (m^{\text{reco}} - m^{\text{true}}) \\ &+ \Delta \mu + (1 - s_{\sigma}) \cdot \left(\mu^{\text{MC}} - m(J\!/\psi)_{\text{PDG}}\right) \end{split}$$

• Crosscheck: Fit again using $m^{\rm corr}(J/\psi)$ in q^2 selection

- + $\mu^{\rm MC}$ is the mean from a fit to simulation
- · $\Delta \mu$ is the shift between means
- $\cdot m^{true}$ is the generated dilepton mass
- $\cdot m^{
 m reco}$ is the reconstructed dilepton mass
- \cdot s_σ is the scale on the width

$$r_{J/\psi} = \frac{\mathcal{B}(B^+ \to K^+ \pi^+ \pi^- J/\psi (\to \mu^+ \mu^-))}{\mathcal{B}(B^+ \to K^+ \pi^+ \pi^- J/\psi (\to e^+ e^-))} = \frac{N_{K\pi\pi(J/\psi \to \mu\mu)}}{N_{K\pi\pi(J/\psi \to ee)}} \cdot \frac{\epsilon_{K\pi\pi(J/\psi \to ee)}}{\epsilon_{K\pi\pi(J/\psi \to \mu\mu)}} \stackrel{\text{SM}}{=} 1$$

- Ratio of tree level branching fractions
- Powerful cross check for the efficiency calculations
- Calculate $r_{J\!/\psi}$ integrated and as a function of kinematic and other quantities
- Found $r_{J/\psi}$ flat and compatible with unity after corrections

Summary

- R_H ratios are a good probe of New Physics contributions
- This analysis adds a measurement in an additional channel
- Presented the precise control over efficiencies

Ongoing work

- Complete systematics
- Finalise fits of the rare modes
- Prepare internal documentation for working group review

Thank you!