Measurement of the photon energy spectrum in inclusive hadronic-tagged $B \rightarrow X_s \gamma$ decays at the Belle II experiment

Henrikas Svidras, Arthur Bolz, Lu Cao, Markus Röhrken, Kerstin Tackmann

Terascale Annual Meeting 2021 November 23, 2021

Inclusive rare radiative decays

 $\mathcal{B}(B
ightarrow X_s \gamma) \sim 3.5 imes 10^{-4}$ [PDG, 2020]

- Inclusive measurement: no constraints on X_s hadronic system
- Complementary to studies of exclusive decays, e.g. $B
 ightarrow K^* \gamma$
- Several SM extensions could contribute in B(B → X_sγ)
 → important ingredient in many global fits
- E_{γ} spectrum allows to determine m_b and non-perturbative parameters, important for $|V_{ub}|$ extraction from $B \to X_u l \bar{\nu}$
- Hadronic-tagged measurement performed by BABAR [PhysRevD.77.051103, 2008]

SuperKEKB

Located at KEK in Tsukuba, Japan.

- Asymmetric electron-positron collider
- B factory: $\sqrt{s} = 10.58 \text{ GeV}$ \rightarrow operates at the $\Upsilon(4S)$ mass
- Nano-beam scheme
- Increased beam currents \rightarrow Factor of 30 increased $\mathcal{L}_{\rm peak}$
- Luminosity record June 2021: $\sim 3.1 \times 10^{34} cm^{-2} s^{-1}$

3/15

Belle II detector

- Most of the sub-detectors upgraded, triggering improvements
- Data taking still ongoing despite Covid-19 pandemic: \rightarrow up to now collected more than 200 fb⁻¹
- Target: $\mathcal{L}_{int} = 50 \text{ ab}^{-1}$ which is $40 \times \text{Belle}$ dataset

Inclusive measurements at Belle II

Known initial state at Belle II allows several different approaches:

The overall idea of hadronic tagged inclusive analysis:

- Fully reconstruct the tagging side $(B \rightarrow hadrons)$
- Reconstruct the signal γ
- Infer the X_s kinematics
- Can access observables in the signal B rest frame

Inclusive measurements at Belle II

Known initial state at Belle II allows several different approaches:

The overall idea of hadronic tagged inclusive analysis:

- Fully reconstruct the tagging side $(B \rightarrow hadrons)$
- Reconstruct the signal γ
- Infer the X_s kinematics
- Can access observables in the signal B rest frame

Beam constrained mass and ΔE :

$$M_{bc} = \sqrt{(\sqrt{s}/2)^2 - p_{Btag}^*}^2 \quad \Delta E = E_{Btag}^* - \sqrt{s}/2$$

5/15

Tag side reconstruction

- Use the Full Event Interpretation: tagging algorithm of Belle II
- Hierarchical reconstruction starting at detector level objects
- Combines candidate B in $\mathcal{O}(10000)$ decay chains
- Gradient-boosted decision trees (BDTs) assign a candidate probability score $\mathcal{P}_{\rm FEI}$ at every reconstruction step
- Relative increase in tagging efficiency by 30–50% compared to conventional algorithms

Reconstruction of $B \rightarrow X_s \gamma$

Reconstruction of signal side (blinded):

- Highest energy γ in event ($E_{\gamma}^B > 1.4 \text{ GeV}$), with cluster quality selection
- Inclusive measurement: X_s system not explicitly reconstructed

Selected dataset contains two types of events:

• $e^+e^-
ightarrow qar{q}~(q=u,d,c,s)
ightarrow$ solely background ("Non- $Bar{B}$ ")

• $e^+e^-
ightarrow Bar{B}
ightarrow$ primarily background, but also signal component ("Generic $Bar{B}$ ")

Non $B\overline{B}$ suppression

More'jet-like'

 $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ More 'spherical'

Use event shape/tag-side information for selection ۲ \rightarrow e.g.: Angle between thrust axis of the tag B and rest of event

۲ Train a BDT to pick out signal events

Challenge:

- Biases on the E_{γ} and X_s system
 - \rightarrow event-shape variable include γ , $X_{\rm s}$ system.

0.4

0.0

0.6 Non-B supression BDT output

0.8

Suppression of photons from $\pi^0 \rightarrow \gamma \gamma$ and $\eta \rightarrow \gamma \gamma$

- Dominant background: γ from π⁰ and η decays
 → signature of a high-energy γ and a low-energy γ
- Vital to build a veto against such photons
- Combine signal candidate γ with other γ in event
- Classifier distinguishes fake combinations effectively
 - \rightarrow based on low-E γ shower shape parameters, energy, M of combination

Application of background suppression

- Continuum suppression and π^0/η veto values have to be optimised
- To optimise all selections two possibilities are explored:
 - Train a 2nd BDT taking as input variables for background suppression or
 - Apply a simple variable-by-variable optimisation using a figure of merit
- The final decision will be based on the expected impact on the final result
- From preliminary studies, post-reconstruction γ candidate retention is around 35%

Good tag selection

- After applying all the selections, there can still be multiple tag-side candidates in an event
- We select only the candidate B^0/B^+ with the highest $\mathcal{P}_{\mathrm{FEI}}$ score
- At this point it ensures 1 tag + 1 photon combination in each event
- However, not all tag candidates constrain the signal side correctly
- One can fit M_{bc} to extract number of 'good' tag candidates: \rightarrow good tags peak in M_{bc}

Fitting strategy

• Using Monte Carlo matching information, identify components in the dataset:

- Peaking 'good' tags (described by Crystal Ball function)
- Less peaking combinatorial $B\bar{B}$ background (described by Chebyshev polynomial)
- Continuum background (described by Argus function)

Goal: performing the fit in bins of E^B_γ

• These PDFs are to be used as building blocks for the fit of the total dataset

M_{bc} fit in bins of E_{γ}^{B}

Fit is performed in bins of E_{γ}^B on 1 ab^{-1} of simulated data

- E_{γ}^{B} range: [1.4 3.5] GeV
- However different bins have different expected number of candidates
- Setup needs to be stable and consistent even on smaller datasets:
 - \rightarrow PDF shapes defined in a prefit step (previous slide)
 - \rightarrow Shared PDF shape for low population bins
 - \rightarrow Only PDF yields and one background shape parameter floating

Example fits on E_{γ}^{B} bins:

Extracted yields

- Fitting procedure stability is evaluated using generated toys from the final fit PDF \rightarrow helps to decide on the optimal setup
- $\bullet\,$ To ensure that fit is also stable on smaller datasets, split the simulated 1 ab^{-1} dataset into four 250 fb^{-1} chunks

 \rightarrow consistent output from fitting setup in all cases

• Next step: subtract leftover background (simulation reliant) \rightarrow work ongoing

Summary and further steps

- Hadronic tagged $B \rightarrow X_s \gamma$ measurement is very suitable for Belle II: $\rightarrow E_{\gamma}$ spectrum in the *B* frame can be directly measured
- One of the main challenges for the analysis is to efficiently suppress dominating $q\bar{q}$ background events and photons originating from $\pi^0 \to \gamma\gamma$
- M_{bc} fitting allows to further suppress backgrounds and extract a sample of high purity
- Analysis moving towards the goal: unfolded E^B_γ spectrum

Thanks!