
Databases Under The Hood
An Introduction For The Curious User

Annett Ungethüm, 16.12.2021

CDCS Hamburg-X Project (BWFGB)

18.11.2021 2

CCU

CDL1 CDL2

CDL3

CDL4

CDCS

Associated Partner

Introduction CDCS

CDCS Structure

18.11.2021 Introduction CDCS 3

CCU

CDL1 CDL2

CDL3

CDL4

CDCS

UHH Project Coordinator DESY Project Coordinator TUHH Project Coordinator

Prof. Dr. Nina Rohringer
DESY / UHH Physics

Prof. Dr. Matthias Rarey
UHH Computer Science
Spokesperson CDCS

Prof. Dr. Sabine Le Borne
TUHH Mathematics

Computational Core Unit
Head: Prof. Rarey (UHH)/ Prof. Knopp (TUHH)

Astro & Particle Physics
Head: Prof. Schleper (DESY)/
Dr. Gaede (UHH)

Photon Science
Head: Dr. Barty (DESY)/
Dr. White (DESY)

Systems Biology
Head: Prof. Grünewald (UHH)/
Prof. Baumbach (UHH)

Accelerator Physics
Head: Prof. Fey (TUHH) / Prof. Schlarb (DESY)

CDCS and CDLs in Detail

18.11.2021 Introduction CDCS 4

CCU

CDL1 CDL2

CDL3

CDL4

CDCS
Miriam Döring

Thomas Merling

Computational Core Unit
Head: Prof. Rarey (UHH)/ Prof. Knopp (TUHH)

Astro & Particle
Physics
Head: Prof. Schleper (DESY)/
Prof. Gaede (UHH)

Photon Science
Head: Dr. Barty (DESY)/
Dr. White (DESY)

Systems Biology
Head: Prof. Grünewald (UHH)/
Prof. Baumbach (UHH)

Accelerator Physics
Head: Prof. Fey (TUHH) / Prof. Schlarb (DESY)

Dr. Florian Griese

Dr. Janis Kummer

Dr. Karen M.-Cantos

Dr. Lennart RustigeDr. Patrick Connor

Dr. Marie Tolkiehn
Scientific-administrative
Management

Dr. Mads Jakobsen

Dr. Khalique Newaz
Dr. Annett Ungethüm

Dr. Antonin Sulc Dr. Ahmad Al-Zoubi

N.N

The CDCS Office Space

18.11.2021 Introduction CDCS 5

As a DASHH student you can
get a transponder to the CDCS
hot desk office space (room 1064)
Ask our secretary Miriam Döring:
miriam.doering@uni-hamburg.de

mailto:miriam.doering@uni-hamburg.de

Data Science Thursdays: Database Timeline

Topic of the month: Databases

You might want to send us your questions in advance to get more sophisticated answers

16 Dec 2021

Why and how

should I use a

database and why it

is different from an

excel sheet

23 Dec 2021

Getting help with

your first queries

(upon request)

06 Jan 2021

Relational DBs,

document stores,

key-value-stores:

There's a system for

every use-case

13 Jan 2021

Get your research

data into a

database!

Survey Results

15.12.2021 7

Data science works with data,

it‘s even in the name

Databases are made for managing

and analyzing data

Why use a DB?

16.12.2021

Database CSV, Excel sheets
Other file formats:

Hdf5, Binary,…

Libraries: dplyr,

pandas,…

Fast loading and

parsing

Automatic

parallellization

Cares for data validity,

e.g. consistent

transactions

Optimizes your queries

Optimized join of data

Offers a turing

complete query

language
Many programming languages

are already turing complete

*most DB systems

*most DB systems

*most DB systems

By „most“ I mean all

systems but SQLite. We

will get to that point later.

Only with PowerBI;

No parallelism with a

vanilla Excel

You can implement all of this yourself…However,

generations of PhD students in systems architecture will

tell you to run if your supervisor ever asks you to do this.

Possible but

depends on your

tools and knowledge

Depends on your

tools

Only if you combine

it with a database,

e.g. hdf5 + Hadoop

Depends on your tools

If you optimize it

yourself

These are basically query

execution engines, but

they are slow engines.

If you really want to use VBAAccidentally since SQL2003

Depends on your

tools

It‘s simple!

15.12.2021 9

It‘s simple! Really!…

Let‘s assume we have to tables:

Table_A and Table_B.

Column_a Column_b

5 2

7 1

Column_1 Column_2

3 5

4 6

Let‘s further assume we want all entries

where Column_2 equals Column_a.

Column_1 Column_2 Column_a Column_b

3 5 5 2

inner_join(Table_A, Table_B, by = c(“Column_2“ = “Column_a“))

pd.merge (Table_A, Table_B, left_on=‘Column_2‘, right_on=‘Column_a‘, how=‘inner‘)

SELECT * FROM Table_A, Table_B WHERE Table_A.Column_2=Table_B.Column_a;

dplyr (R)

pandas (python)

SQL

→ It won‘t win a prize for literature, but it‘s close to a spoken language.

Join tables with Excel

10

*requires an add-on

source: ablebits.com

It‘s an all in one solution!

• Optimized data storage and reader
➢ Does not kill your file system with thousands of small files
➢ Loads only what is necessary, i.e. not always the whole file
➢ Indexes your data (more or less automatically)

• Comes with a standardized query language (SQL)

• Optimized operators (e.g. join, merge, and aggregation are operators)

• Query optimizer (the thing that schedules your operators)

• Additional features often included: compression, encoding, user
management, out-of-memory execution (in case your files are really big),…

15.12.2021 11

15.12.2021 12

Let‘s start simple!

A Data Filter –What‘s for lunch?

The typical broke student problem:

Which meals are cheaper than 5 €?

Databases Under The Hood

Meal Price

Pizza 6,50

Pasta 4,90

Pie 1,20

Potato Salad 5,80

Pannfisch 7,90

MensaMeals

Which meals are cheaper than 5€?

15.12.2021 Databases Under The Hood 14

To answer this question, we need:

Meal Price

Pizza 6,50

Pasta 4,90

Pie 1,20

Potato Salad 5,80

Pannfisch 7,90

Data Query

Select all meals where the price is lower than 5

System

MensaMeals

A plan

• Go through all entries sequentially

• Check the price of each entry

• Save an entry if the price is <5

Something that implements everything

Roadmap

15.12.2021 Databases Under The Hood 15

Data
Query

Database System

Select all meals where the

price is lower than 5

• Go through all entries sequentially

• Check the price of each entry

• Save an entry if the price is <5

Something that implements everything

Roadmap

15.12.2021 Databases Under The Hood 16

Data
Query

Database System

Get data into a virgin database

15.12.2021 17

1. Create an empty table

2. Insert rows

Database

insert

Pasta 4,90

CREATE TABLE MensaMeals (Meal TEXT, Prize REAL);

Name of table
Name and type

of columns

End of statement

INSERT INTO MensaMeals VALUES (‘Pasta‘, 4.90);

Name of table Values

Show contents of your table:

SELECT * FROM MensaMeals;

Examples

Get data into a virgin database

Database Systems offer import functions

→ Supported formats differ (csv,
parquet, db, …)

→ Syntax differs

→ Auto-detection of data types and
delimiters may or may not work

15.12.2021 18

MensaMeals.csv
Database

import

CREATE TABLE MensaMeals AS SELECT * FROM ‘MensaMeals.csv‘;

COPY INTO MensaMeals FROM ‘home/itsme/MensaMeals.csv‘;

COPY MensaMeals FROM ‘home/itsme/MensaMeals.csv‘ DELIMITER ‘, ‘ CSV HEADER;

PostgreSQL

MonetDB

DuckDB

15.12.2021 19

Let‘s keep it simple!

…And do some theory while you are still listening.

Data in Relational Databases

15.12.2021 20

Meal Price

Pizza 6,50

Pasta 4,90

Pie 1,20

Potato Salad 5,80

Pannfisch 7,90

MensaMeals

This is a relation, defined as MensaMeals(Meal,Price)

This is a tuple, which belongs to the

relation MensaMeals

Relation and table often used as synonyms

but

• A relation can be defined without tuples,

i.e. without being a ‘real‘ table

• A table is only an illustration of your data

Meal and Price are the attributes of the

relation MensaMeals

*That‘s why table based DBs are called relational Databases

Storage Layouts

15.12.2021 21

Relations are usually illustrated as tables This tells us nothing about the storage layout
(cf. a matrix that can be stored differently→ row- or column-major)

2 main layouts to store your table

Row-Store (tuple-wise)

Column-Store (attribute-wise)

Pizza 6,50 Pasta 4,90 Pie 1,20
Potato

Salad
5,80

Pann-

fisch
7,90

Pizza Pasta Pie
Potato

Salad

Pann-

fisch

6,50 4,90 1,20 5,80 7,90

Memory address→

Memory address→

Memory address→

This is what your traditional

relational SQL database does

This is what all (not so traditional)

column-oriented databases do

Why should you care?

Memory access is expensive!

15.12.2021 22

*Throughput on an Intel Xeon E3-1275

Gottel, Christian & Pires, Rafael & Rocha, Isabelly & Vaucher, Sébastien &

Felber, Pascal & Pasin, Marcelo & Schiavoni, Valerio. (2018). SRDS 2018

Add

a

tuple

(INSERT)

Filter

a

value

(SELECT)

Row Store Column Store

Sequential

access
Random

access

Random

access Sequential

access

Note the log scale

Your ideal layout depends on your use-case.

Different systems use different layouts, so choose wisely!

NoSQL and column-oriented DBs: Frequent
misunderstandings

• NoSQL stands for Not only SQL
• Wide-column DBs (NoSQL) and column-stores (SQL) are not the same, but

both often referenced as column-oriented
➢ We will use it to reference column-stores

• Usually, column-oriented databases can be queried using SQL and allow
the definition of relations
➢ Convenience of SQL, and performance and flexibility of column-stores
➢ Example: Fast and easy addition/deletion of attributes

15.12.2021 23

ALTER TABLE MensaMeals ADD Calories INT NULL;

Meal

Price

Calories

Column-Store

Row-Store

Remember what

we just learned

about random

memory access

Roadmap

15.12.2021 Databases Under The Hood 24

Data
Query

Database System

Queries

• Queries consist of operators and can be formally described with query
languages, e.g. relational algebra (RA), SQL

• SQL is a keyboard-friendly query language while RA is used for internal
representation

15.12.2021 25

Meal Price

Pizza 6,50

Pasta 4,90

Pie 1,20

Potato Salad 5,80

Pannfisch 7,90

MensaMeals

Select Operator

Relational Algrebra: σ Price < 5 (MensaMeals)

SQL: SELECT * FROM MensaMeals WHERE Price < 5;

Result:

Meal Price

Pasta 4,90

Pie 1,20

Operator

Parameter
Relation

Examples:

Operator Examples

15.12.2021 26

Project Operator Join Operator
Show only the names of all

meals where the price is

lower than 5€.

Where can I get the meals

which cost less than 5€?
∏Meal(σ Price < 5 (MensaMeals))

Meal Price

Pasta 4,90

Pie 1,20

SELECT Meal FROM MensaMeals

WHERE Price < 5;

Result: Meal

Pasta

Pie

Mensa Meal

Campus Mensa Pizza

Mensa Cafe Pie

Garden Mensa Pasta

Old Mensa Potato Salad∏Mensa (σ Price < 5

(MensaMeals ⋈MensaMeals.Meal=DailyOffers.MealDailyOffers))

DailyOffers

SELECT Mensa FROM

MensaMeals JOIN DailyOffers

ON MensaMeals.Meal=DailyOffers.Meal

WHERE Price < 5;
Mensa

Mensa Cafe

Garden Mensa

Result:

Why should you care?

➔ With RA you can do everything,
you can do with other algebras,
e.g. prove that two queries
produce the same results

➔ Restructure a query for better
performance or reusability of
subqueries

➔ Understand the output of the
query optimizer (later today)

27

∏Mensa (σθ0
(MensaMeals ⋈θ1

DailyOffers))

MensaMeals.Meal=DailyOffers.MealPrice < 5

∏Mensa ((σθ0
(MensaMeals)) ⋈θ1

DailyOffers)

Subquery Join is executed first

Subquery Selection is executed first

SELECT Mensa FROM

(Select Meal FROM MensaMeals WHERE

Price < 5) food

JOIN DailyOffers

ON food.Meal=DailyOffers.Meal;

Subquery can be

saved and reused

equivalent

transformation

A comprehensible list of transformations can be

found here:

https://www.postgresql.org/message-

id/attachment/32513/EquivalenceRules.pdf

https://www.postgresql.org/message-id/attachment/32513/EquivalenceRules.pdf

Reuse Subqueries with views

Reusability of queries and query results
➔ Queries and Subqueries (Views) can be stored and referenced → nicer queries
➔ The result of views can be stored → higher performance for frequently used queries and

remote data

15.12.2021 28

CREATE MATERIALIZED VIEW CheapFood AS

SELECT Meal FROM MensaMeals WHERE

Price < 5;

REFRESH MATERIALIZED

VIEW CheapFood;

Create a view called

CheapFoodStore (materialize) the view
Refresh the view

• Refresh the view after updates in your base data

• Not supported by all database systems

Roadmap

15.12.2021 Databases Under The Hood 29

Data
Query

Database System

Roadmap

15.12.2021 Databases Under The Hood 30

DataQuery

Database System

Parser

*strongly simplified

Reads query and translates it into intermediate language

Roadmap

15.12.2021 Databases Under The Hood 31

DataQuery

Database System

Parser Optimizer

*strongly simplified

• Optimizes operator sequence

• Choses physical operators

• Additional optimizations, e.g. compression, intermediate

materialization, data placement, …

• Result: Query Execution Plan

Roadmap

15.12.2021 Databases Under The Hood 32

DataQuery

Database System

Parser Optimizer

Result

*strongly simplified

Runs the query, manages memory, and returns the result

Engine

Roadmap

15.12.2021 Databases Under The Hood 33

DataQuery

Database System

Parser Optimizer

Engine
Result

*strongly simplified

Optimizer: Query Execution Plan Optimization

15.12.2021 34

Further Reading

Foundations for operator order optimization:

https://www.researchgate.net/publication/2916321_Bringing_Order_to_Query_Optimization

Survey on different cardinality estimation techniques: http://www.vldb.org/pvldb/vol11/p499-harmouch.pdf

SELECT Mensa FROM MensaMeals JOIN DailyOffers

ON MensaMeals.Meal=DailyOffers.Meal WHERE Price < 5;

MensaMeals DailyOffers

⋈θ1

σθ0

∏Mensa

σPrice<5

⋈Meal

∏Mensa

Equivalent

Transformation

Plan A: ∏Mensa (σθ0
(MensaMeals ⋈θ1

DailyOffers))

Plan B: ∏Mensa ((σθ0

(MensaMeals))⋈θ1
DailyOffers)

• Database Systems use a relational

algebra for internal representation

• Optimizers try to automatically find the

most efficient sequence of operators

➔ Conventional approach: Reduce data as

early and as cheap as possible

➔ Tool: Cardinality/Selectivity estimation

• The chosen sequence of operators is

the final Query Execution Plan (QEP) MensaMeals DailyOffers

*QEPs

are DAG-

structured

https://www.researchgate.net/publication/2916321_Bringing_Order_to_Query_Optimization
http://www.vldb.org/pvldb/vol11/p499-harmouch.pdf

Optimizer: Physical Operator Selection

• For each logical operator (e.g. join), there can
be different physical operators (e.g. hash-join,
nested-loop-join), i.e. the same operator can be
implemented in different ways

• Joins are a bottleneck in most queries → Join
optimization is a much-noticed field of
research

• Choice of physical operator depends on exact
use case. Examples from PostgreSQL:

➔ Nested-Loop: full join, one very small table,
condition is not an equality

➔ Hash Join: similarity joins, small expected hash
table

➔ Merge Join: sorted data, large tables

15.12.2021 35

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

2016 2017 2018 2019 2020 2021

#
re

s
u
lt
s
 [
*1

0
0
0

]

year

Results for different search terms in google scholar

Database Join Operator

New Join Operator

Efficient Join Processing

Further Reading
More on join order optimization: Query optimization

through the looking glass, and what we found running

the Join Order Benchmark, V.Leis et al.

Overview on Popular Join algorithms and an alternative:

New algorithms for join and grouping operations, G.

Graefe

Why should I care?

• A look at the query plan can help you identify the bottleneck of your query

• The Explain keyword is supported by many systems and shows the query
plan, the physical operator, sometimes the cost (i.e. the runtime) of the
operators, and some more or less useful additional information (e.g. the
size of the relations and intermediates)

15.12.2021 36

EXPLAIN (analyze) SELECT Mensa

FROM MensaMeals JOIN DailyOffers

ON MensaMeals.Meal=DailyOffers.Meal

WHERE Price < 5;

• Output can look different

depending on DB system,

• Options might be available, e.g.

analyze, timing on/off, buffers

• Example output for join operator (PostgreSQL):

Hash Join (cost=0.00..5.37 rows=3 width=2) (actual time=0.00..2.222 rows=2 loops=1)
-> Hash Cond: (MensaMeals.Meal=DailyOffers.Meal)
…

Output of EXPLAIN

The mensa example is too small to generate interesting output
→ Switch to the Protein Database (PDB)
→ Create a more complex query

15.12.2021 37

SELECT count(*) FROM (SELECT 1 FROM testsequence, authors WHERE

Sequence_Count < 3 AND testsequence.PDB_ID = authors.IDCODE

GROUP BY authors.author) foo;

Output of EXPLAIN

15.12.2021 38

Some show a graph

(duckdb)…

…some show an ugly graph (sqlite)…

…and some show a formatted version of their internal RA

representation (e.g. MonetDB, PostgreSQL)

→ This is where you are lost without Relational Algebra

σ C_5 < 3 (X_15)

Output of EXPLAIN

15.12.2021 39

DuckDB SQLite

MonetDB

Additional Projection operator only needed in column-stores

→Find the data of the affected tuples (items with the same idx) in the arrays which store the remaining columns

→In row-stores, tuples are stored together, no lookup needed

Output of EXPLAIN

15.12.2021 40

DuckDB SQLite

MonetDB

B-Trees and Hashes are index structures

→ Takes time to build

→ Makes lookups faster

Index structures

15.12.2021 41

Task: Find all red entries

Trivial solution: Scan the whole dataset

Structures for faster searching:

Tree structures

Sorting

hash(...)Buckets

Hash-based structures (position defined by hash

function)

User-defined indexes can be ignored by

the DBS (looking at you: MonetDB)

Index structures

A good database system takes care for you of the index structures
But

• It it not all-knowing (e.g. if an index would come in handy for future
queries)

• Not all systems are good systems
→ You can create an index yourself with CREATE INDEX, e.g.

15.12.2021 42

CREATE INDEX countindex ON testsequence (Sequence_Count) ;

An Index can be nested, e.g.

CREATE INDEX countindex ON testsequence (PDB_ID, Sequence_Count);

• Your query plan may or may not provide useful information on which

attributes it is using in which sequence

• Nested indexes only work for the exact sequence they are made for, i.e.

PDB_ID, or PDB_ID, Sequence_Count, but not Sequence_Count

Roadmap

15.12.2021 Databases Under The Hood 43

DataQuery

Database System

Parser Optimizer

Engine
Result

*strongly simplified

Data Processing Models

15.12.2021 44

Analytical queries usually read only a small number
of columns, but all elements of these columns

For parallel or pipelined execution, data must be split

Row Store Column Store

Tuple-at-a-time Vector/Block-at-a-time Operator-at-a-time

op1 op2 op1 op2op1 op2

 Intermediate tuples not

stored, but passed directly to

next operator

→Operators can be fused

 Limited applicability of other

optimizations, e.g. prefetching,

vectorization, compression,…

 A part (vector/block) of the

column processed at once

→Operator fusion only for

small blocks

 Trade-off between operator

fusion and memory access

performance

 Whole operator (all elements of

the column) processed at once

 Intermediates materialized

→No operator fusion, only coarse-

grained parallelization

 High potential for optimization of

memory reads

Why should I care?

• Different optimizations work with different processing models

• Your hardware limits your optimization space

15.12.2021 45

Example B: You do not have much main
memory and writing to it is slow

➔ Materializing your intermediates becomes
a bottleneck and might not work at all with
operator-at-a-time or large blocks (block-at-
a-time)

Example A: You have a new intel server with the
AVX512 instruction set for vectorization (under
linux, lscpu tells you if you have it; no root
required)

➔ A system which implements only tuple-at-a-
time is not able to use this instruction set

Vector registers can hold multiple

values, e.g., up to 8 64-bit values with

AVX512

Tuple-at-a-time can use only one slot of this register

op1 op2data input result

Operator-at-a-time

Tuple-at-a-time

The Effect of Optimizers and Engines

SQLite DuckDB
• Row-Store

• Disc-centric

• Tuple-at-a-time processing

• Only 1 Join implementation

• Next to no query optimization

• Column-Store

• In-Memory with out-of-memory option

• Vector-at-a-time processing

• Different Join implementations

• Optimizer actually does stuff (join order optimization, eliminate

common subqueries,…)

Reads and

writes data

to/from disk

Reads from disk

and writes to

main memory

Reads

from disk
Reads from

main memory

Reads from

main memory

SELECT * FROM testsequence WHERE Sequence_Count<3;

SELECT count(*) FROM (SELECT 1 FROM testsequence, authors

WHERE Sequence_Count < 3 AND testsequence.PDB_ID =

authors.IDCODE GROUP BY authors.author) foo;

Load data from csv file (<300kB) Simple query on small data (<300kB) Complex query on slightly more data (~20MB)

Ancient and

extremely popular

New and completely

fameless

Speed-up went from

~2x to ~78x

(simple select vs.

new query)

Roadmap

15.12.2021 Databases Under The Hood 47

DataQuery

Database System

Parser Optimizer

Engine
Result

*strongly simplified

The 2 Flavours of Database Systems

15.12.2021 48

Application Database
includes/imports

API
Embedded

Database System

accesses

e.g. Python module, C++

header,…

You Python, R, C++,…

project

Usually a library which does

not need special permissions

to be installed, e.g. a *.so file

One or more files containing

your data, format depends

on your DB system

• No special permissions required

• No bells and whistles (no user management, distributed processing, multiple

databases at once,…)

• Runs (almost) everywhere

• Porting to other platforms relatively simple (of course, a container makes it

even easier)

Embedded DBS
provides

interface

The 2 Flavours of Database Systems

15.12.2021 49

Application Database
includes/imports

API

provides

interface Embedded

Database System

accesses

e.g. Python module, C++

header,…

You Python, R, C++,…

project

Usually a library which does

not need special permissions

to be installed, e.g. a *.so file

One or more files containing

your data, format depends

on your DB system

Embedded DBS

Client-Server DBS

API/DriverApplication/Client

Database ServerAPI/DriverApplication/Client

Database

Database
API/DriverApplication/Client

accesses

includes/

uses provides

interface

The 2 Flavours of Database Systems

15.12.2021 50

Client-Server DBS

API/DriverApplication/Client

Database ServerAPI/DriverApplication/Client

Database

Database
API/DriverApplication/Client

accesses

includes/

uses provides

interface

• Usually requires installation as root

• Shipping the whole package (DB, DBS, Application) is challenging

→ Try a container

• Offers more features than Embedded DBS, e.g. user management, data

partitioning, drivers for a standardized interface,…

Database Systems

15.12.2021 51

Storage
Column

Processing
Physical Join Operators Free?

Open

source?

Embedded/

Client-Server

SQLite Row store - Nested Loop yes yes Embedded

PostgreSQL

Row store,

Column store

available as

extension

depends on

extension

(Indexed) Nested Loop, Hash

Join, Merge Join
yes yes

Client-Server,

3rd party

projects for

embedding

MySQL Row Store -

Different combinations of

Block-based, Indexed, Nested

Loop, Hash Join

yes

(community

version)

yes

Client-Server,

Embedded

(commercial)

MonetDB Column store
Operator-at-a-

time

Different combinations &

variations of Partitioned,

Indexed, Nested Loop, Hash

Join

yes yes Client-Server

MariaDB
Column store +

hybrid (multiple

versions)

Block-at-a-time

Different combinations of

Indexed, Block-based, Nested

Loop, Hash Join

yes

(community

version)

yes Client-Server

DuckDB
Column store

(data blocks)
Block-at-a-time

(Indexed, Block-based) Nested

Loop,

Merge Join

yes yes Embedded

There is no one fits all.

Choose wisely!

*I
n

fo
rm

a
ti
o

n
 c

o
m

e
s
 f
ro

m
 a

 w
ild

 c
o

m
b

in
a

ti
o

n
 o

f
d

if
fe

re
n

t
s
o

u
rc

e
s
 in

c
lu

d
in

g

d
o

c
u

m
e

n
ta

ti
o

n
s
,
p

a
p

e
rs

,
a

n
d

 s
o

u
rc

e
 c

o
d

e
.
It

 m
ig

h
t
b

e
 i
n

c
o

m
p

le
te

.

Database Systems

15.12.2021 52

Use-Cases

SQLite It’s better than not having a database at all.

PostgreSQL Can do almost everything if you know which extension(s) you need. Might be overkill for what you need.

MySQL For frequent transactions (e.g. insert new tuples), some features might not be free.

MonetDB
Good all-in-one solution for most analytical use-cases. Runs reliably on all sizes of machines, even on a laptop (and

on my mobile phone).

MariaDB Like MonetDB but with more features, e.g. different storages. Might be a total overkill for your project.

DuckDB If you don’t need bells and whistles for your analytics (e.g. no user management, no server, limited variety of APIs).

Oracle

A database system on steroids, can deal with almost everything including geo-spatial data and data files in the PB

range.

Costs and arm and a leg, but DESY seems to have the money.

source: https://www.oracle.com/assets/technology-price-list-070617.pdf

Database Systems

16.12.2021 53

Use-Cases

SQLite It’s better than not having a database at all.

PostgreSQL Can do almost everything if you know which extension(s) you need. Might be overkill for what you need.

MySQL For frequent transactions (e.g. insert new tuples), some features might not be free.

MonetDB
Good all-in-one solution for most analytical use-cases. Runs reliably on all sizes of machines, even on a laptop (and

on my mobile phone).

MariaDB Like MonetDB but with more features, e.g. different storages. Might be a total overkill for your project.

DuckDB If you don’t need bells and whistles for your analytics (e.g. no user management, no server, limited variety of APIs).

Oracle

A database system on steroids, can deal with almost everything including geo-spatial data and data files in the PB

range.

Costs and arm and a leg, but DESY seems to have the money.

source: https://www.oracle.com/assets/technology-price-list-070617.pdf

Summary

15.12.2021 Databases Under The Hood 54

DataQuery

Database System

Parser Optimizer

Engine
Result

*strongly simplified

Not offered by dplyr, pandas or

other R, python, matlab,… libraries
Storage and access inefficient

with plain text files (e.g. csv)

Outside of a DB Engine:

Limited choice of operator

implementations + not state-

of-the-art implementations

Each library provides an

own interface while SQL is

(more or less) the same for

each DB system

What we did not cover

• Database design/Entity-Relationship-Model

• (Specialized) schemas, normalization

• Data compression and encoding

• NoSQL DBs (graph data, key-value stores,…) → January

• Concurrent queries (scheduling, conflicts, anomalies…)

• Application interfaces/DB drivers (e.g. JDBC, ODBC)
➔ There are great tutorials, just ask the internet

• User-defined functions→ for everything you don‘t want to express with
SQL

• Anything with a little more depth

15.12.2021 Databases Under The Hood 55

Next Week

15.12.2021 56

We will use DuckDB (because it will likely run

on your laptop and is comparatively fast)

We will look at the query plans and create an index

Import some data, send a few queries, and export the data

Databases Under The Hood
An Introduction For The Curious User

Annett Ungethüm, 16.12.2021

