
Databases Beyond Tables
There‘s A System For Every Use-Case

Annett Ungethüm, 06.01.2022

CDCS Hamburg-X Project (BWFGB)

18.11.2021 59

CCU

CDL1 CDL2

CDL3

CDL4

CDCS

Associated Partner

Introduction CDCS

CDCS Structure

18.11.2021 Introduction CDCS 60

CCU

CDL1 CDL2

CDL3

CDL4

CDCS

UHH Project Coordinator DESY Project Coordinator TUHH Project Coordinator

Prof. Dr. Nina Rohringer
DESY / UHH Physics

Prof. Dr. Matthias Rarey
UHH Computer Science
Spokesperson CDCS

Prof. Dr. Sabine Le Borne
TUHH Mathematics

Computational Core Unit
Head: Prof. Rarey (UHH)/ Prof. Knopp (TUHH)

Astro & Particle Physics
Head: Prof. Schleper (DESY)/
Dr. Gaede (UHH)

Photon Science
Head: Dr. Barty (DESY)/
Dr. White (DESY)

Systems Biology
Head: Prof. Grünewald (UHH)/
Prof. Baumbach (UHH)

Accelerator Physics
Head: Prof. Fey (TUHH) / Prof. Schlarb (DESY)

CDCS and CDLs in Detail

18.11.2021 Introduction CDCS 61

CCU

CDL1 CDL2

CDL3

CDL4

CDCS
Miriam Döring

Thomas Merling

Computational Core Unit
Head: Prof. Rarey (UHH)/ Prof. Knopp (TUHH)

Astro & Particle
Physics
Head: Prof. Schleper (DESY)/
Prof. Gaede (UHH)

Photon Science
Head: Dr. Barty (DESY)/
Dr. White (DESY)

Systems Biology
Head: Prof. Grünewald (UHH)/
Prof. Baumbach (UHH)

Accelerator Physics
Head: Prof. Fey (TUHH) / Prof. Schlarb (DESY)

Dr. Florian Griese

Dr. Janis Kummer

Dr. Karen M.-Cantos

Dr. Lennart RustigeDr. Patrick Connor

Dr. Marie Tolkiehn
Scientific-administrative
Management

Dr. Mads Jakobsen

Dr. Khalique Newaz
Dr. Annett Ungethüm

Dr. Antonin Sulc Dr. Ahmad Al-Zoubi

N.N

The CDCS Office Space

18.11.2021 Introduction CDCS 62

As a DASHH student you can
get a transponder to the CDCS
hot desk office space (room 1064)
Ask our secretary Miriam Döring:
miriam.doering@uni-hamburg.de

mailto:miriam.doering@uni-hamburg.de

Data Science Thursdays: Database Timeline

Topic of the month: Databases

You might want to send us your questions in advance to get more sophisticated answers

16 Dec 2021

Why and how

should I use a

database and why it

is different from an

excel sheet

Holidays!

06 Jan 2021

Relational DBs,

document stores,

key-value-stores:

There's a system for

every use-case

13 Jan 2021

Get your research

data into a

database!

Roadmap: The Database System Universe

23.12.2021 64

Types in

Relational

Databases

int

int

int

NoSQL

Databases

Distributed

Databases

Heterogeneous

Databases

Roadmap: The Database System Universe

23.12.2021 65

Types in

Relational

Databases

int

int

int

NoSQL

Databases

Distributed

Databases

Heterogeneous

Databases

Roadmap: The Database System Universe

03.01.2022 66

Types in

Relational

Databases

int

int

int

Recap Relational Databases

Binary Large Objects

Multi-Dimensional Data

Recap Relational Databases

Meal Price

Pizza 6,50

Pasta 4,90

Pie 1,20

Potato Salad 5,80

Pannfisch 7,90

MensaMeals

This is a relation, defined as

MensaMeals(Meal,Price)

This is a tuple, which belongs to the

relation MensaMeals

Meal and Price are the attributes of the

relation MensaMeals

• Each attribute has a type, e.g. integer,

text/varchar/string, real

• Types here: varchar and real

*That‘s why table based DBs

are called relational Databases

Data is not always structured in tables containing plain numbers or text

SQL is a query language for relational DBs, e.g.

SELECT * FROM MensaMeals WHERE PRICE <5;

Fancy data in relational databases (SQL DBs)

Standard types you may know:

CHAR, VARCHAR (aka TEXT or STRING), REAL, INTEGER, SMALLINT, BIGINT,
FLOAT, DATE, TIME, INTERVAL,…

Standard types you may not know:

BINARY, BLOB (binary large object), MULTISET (collection of unordered
values), ARRAY (array of another standard type), MDarray (multidimensional
array, since 2019), JSON, …

• Some systems support more types or alternative notations, e.g. TINYINT, MAP,
LIST, …

• Nesting of lists, structs and other composite types is supported by many systems

Roadmap: The Database System Universe

03.01.2022 69

Types in

Relational

Databases

int

int

int

Recap Relational Databases

Binary Large Objects

Multi-Dimensional Data

Binary large objects (Blobs)

• Arbitrary binary data (e.g. images)

• “large” is a nebulous word → it’s a bad idea to store a file with several GB
of arbitrary binary data in a relational database

• Database does not know what your binary data represents

• Only the first x bytes are indexed

• Inserting data via command line might not be feasible → use the API

• Supported features vary heavily between systems → Client-Server
systems usually come with a larger set of features

animal picture

Duck x0000…FFFF00FF…

Fish x0000…FFFF0000…p
ic

tu
re

s Tasks:

1. Insert data from file

2. Return something, e.g. blob size

3. Match a pattern, e.g.

Blob Features

DuckDB (embedded, free) MySQL (Client-Server, free) Oracle (Client Server, $$$)

Use undocumented functions of

backend or read and construct query

yourself

Task

1

insert

2

return

3

match

quick and

dirty c++

• Same as DuckDB but with

convenience function to escape

special characters in strings

(mysql_real_escape_string) OR

• Use LOAD_FILE(‘filename‘) →

SQL extension

Oracle SQL extension can be used

(PL/SQL)

lnFile BFILE := BFILENAME(‘directory', ‘fish_small.bmp’);

…

DBMS_LOB.LOADFROMFILE(

DEST_LOB => lnBlob,

SRC_LOB => lnFile,

AMOUNT => DBMS_LOB.GETLENGTH(lnFile));

Limited choice of functions→ check

for equality and count of bytes (=size)

SELECT animal, octet_length(picture)

FROM pictures

No support

→ Return blob and do it on your own

Blobs mostly treated like byte strings

→ use string operations

LOCATE (substring, string)

Multiple ways to do this, e.g.:
• utl_raw .cast_to_raw () → get raw

data format

• dbms_lob.instr() → compare content

(alternative for LIKE)

Extensive selection of functions in

dbms_lob package, e.g. getlength,

get_storage_limit, compare,…

Roadmap: The Database System Universe

03.01.2022 72

Types in

Relational

Databases

int

int

int

Recap Relational Databases

Binary Large Objects

Multi-Dimensional Data

Multi-Dimensional Data

Nesting of lists, maps, arrays is supported by most systems

Example using DuckDB:

CREATE TABLE mylist (id INT, intlist INT[], nestedlist INT[][]);

Integer type List of integers
Nested list of

integers (depth=2)

INSERT INTO mylist VALUES (0, [0,1,2,3,4,5], [[0,1],[2,3],[4,5]]);

SELECT * FROM mylist;

INSERT INTO mylist VALUES (1, range(5,10), [range(5,10),range(11,15)]);

INSERT INTO mylist VALUES (2, generate_series(5,10),[generate_series(5,10),

generate_series(11,15)]);

SELECT * FROM mylist;

Working With Multidimensional Data

WHERE-clause and functions treat the whole element as one unit, e.g. the
whole nested list

23.12.2021 74

select * from mylist where nestedlist=2; Throws an error because elements are not literals

select * from mylist where nestedlist=[[0,1],[2,3],[4,5]];

select * from mylist where intlist[2]=7;

select * from mylist where nestedlist[1]=[11,12,13,14];

select * from mylist where nestedlist[1][1]=12;

More Fun With Nested Lists

75

SELECT * FROM (SELECT unnest (nestedlist), id FROM mylist) foo;

SELECT * FROM (SELECT unnest (nestedlist) AS nr, id FROM mylist) foo WHERE foo.nr=[0,1];

Unnest nested structures

Search in an unnested structure

Long enough that a view starts

making sense (see dec 16, slide 28)

ID needed to know which tuple the

unnested elements belong to

Get information about array, e.g. length

SELECT len (nestedlist) FROM mylist;

SELECT len (nestedlist[0]) FROM mylist;

SELECT sin (unnest(intlist)) FROM mylist;

Element-wise math

Roadmap: The Database System Universe

23.12.2021 76

Types in

Relational

Databases

int

int

int

NoSQL

Databases

Distributed

Databases

Heterogeneous

Databases

Roadmap: The Database System Universe

03.01.2022 77

NoSQL

Databases

Not Only SQL Databases

Graph Databases

Key-Value Stores

Document Stores

Application-Specific Database Systems

Not only SQL Databases (NoSQL)

23.12.2021 78

DataQuery

Database System

Parser Optimizer

Engine
Result

*strongly simplified

• Query language: Not only

SQL, only few standards for

NoSQL query languages yet

• Type of query and operators

can be comletely different

Can be organized and

represented like in a

Relational DB (e.g. rows

and columns), but also

completely differently,

e.g. in graphs

Needs to parse

at least one

more query

language

beyond SQL

Optimization for different kinds of queries

and data → different optimizaton

challenges from Relational DBs

Data management and

operator execution

Roadmap: The Database System Universe

03.01.2022 79

NoSQL

Databases

Not Only SQL Databases

Graph Databases

Key-Value Stores

Document Stores

Application-Specific Database Systems

Graph Databases

Most common logical representation: Property Graph Model

23.12.2021 80

Alice
:Person

Bob
:Person

Charlie
:Person

knows

knows

knows

knows

likes

knows

Properties:

name: Alice A.

age: 26

Parts of the Property Graph Model

• Nodes (here: Alice, Bob, Charlie)

• Node properties/attributes (here: Name,

Age)

• Node Label: describe the role of a node

(here: Person)

• Directed and named edges between

nodes (here: knows, likes)

• Edge properties/attributes (here: none)

Graph Databases

Alternative representation: RDF (Resource Description Framework) → Triples

23.12.2021 81

Alice
Bob

Charlie

knows

knows

knows

knows

likes

knows

role

Person

Alice A.

26

role

role

name

age

Parts of the RDF Model

• Source – Predicate – Object

e.g. Charlie – knows – Alice

• No Properties → properties have to

be expressed via triples,

e.g. Alice – age – 26

• Each node and edge is just a unique

label

Graph Databases

Node and Edge creation depends on System and preferred query language

• SPARQL uses INSERT DATA statement

• Cypher uses CREATE statement

23.12.2021 82

INSERT DATA{ <eve> role < Person>;

<name> “Eve V.“;

<age> 45; }

CREATE (eve:Person {

name: „Eve V.“,

age: 45})

Physical representation in memory can

be very different, e.g. as XML, in turtle

syntax, a table in main memory, as a

relational database (in all its variants),…

→Neo4j uses different databases for

nodes, properties, edges, and indexes

Graph Databases

Partitioning of graphs when they become too big for one system

→ Sharding is an NP-hard problem→ You won‘t always find the perfect
solution, but you can find good solutions

04.01.2022 83

Questions to answer

• Where to cut the graph? (equal size, balance load,

minimize inter-node edges, keep subgraphs at same

node,…)

• How to cut the graph? (Through edges or through

vertices)

• How to store the data, i.e. in which format

Sounds familiar? → Blockchains are basically graphs. The blockchains of some crypto currencies have become really

large, but a node still has to hold and synchronize the whole graph. → Sharding with the added necessary security

layer is the next big challenge for cryptosT
ri
v
ia

Graph Databases

Query languages:
• Cypher (Neo4j)
• SPARQL (standardized by W3C)
• DSLs (e.g. Green-Marl), …

Example: Find all people Alice knows
Cypher: MATCH (:Person {name: ‚Alice A.‘}) –[:KNOWS]->(p:Person)

Return p
SPARQL: PREFIX foaf: http://xmlns.com/foaf/0.1/

SELECT ?name WHERE {

?p foaf:name “Alice A.“ ;

foaf:knows ?o .

?o foaf:name ?name . }

23.12.2021 84

Alice
:Person

Bob
:Person

Charlie
:Person

knows

knows

knows

knows

likes

knows

Properties:

name: Alice A.

age: 26

foaf:

• An ontology definition

• Short for friend of a friend

• Intentionally ignored in triple

creation for comprehensibility

Different Queries in Graph DBs (Selection)

Reachability Pattern matching Betweenness centrality
Score based on number/weight of

shortest paths through each node
Find occurrences of a pattern in a graph. Can a node be reached from another node?

B
C

A ED

?

?

B
C

A ED

L M

K
Pattern

Matches
B

C

A ED

B
C

A ED

AB: A->B

AC: A->B->C

AD: A->B->C->D

AE: A->B->C->D->E

BC: B->C

BD: B->C->D

BE: B->C->D->E

CD: C->D

CE: C->D->E

DC: D->C

DE: D->E

EC: E->C

ED: E->D

A

B: 3

C: 4

D: 3

E

Graph Databases

Common optimization goal with Relational Databases: reduce runtime
Common approach: Reduce work to do as early as possible
Different challenge: in relational DBs, number of results is reduced as early
as possible → in Graph DBs communication between vertexes/edges, nodes
or clusters is reduced as early as possible

86

Query: Who likes Bob?

Query Plan: Go through all

triples or edges and find one

with „likes“ as poperty/label and

„Bob“ as objective

Performance Bottleneck:

Broadcast the query to all triples

Possible optimizations:

1. Create inverted edges

2. Create and use an index on

Bob‘s incoming edges

3. Store entities with many

connections close to each other

(e.g. on the same node)

4. …

Other common

optimizations:

• Breadth First Search

(BFS) or Depth First

Search (DFS)

• Selection of starting

node(s)

• Degree of parallelism

• …

Graph Databases

Stand alone engines implementing a
DSL, e.g. GreenMarl→ no or very
limited query optimization, requires
additonal compiler to compile query

23.12.2021 87

Full Graph Database System, e.g.
Neo4j, Pregel,…

• Can (relatively) easily be integrated

into own project, i.e. no system

installation

• Rollout of own Software: No

dependency on a fully fledged

(potentially expensive) database

system

• All-in-one solution including

optimization

• May require root to install

• Can become expensive

• Licensing often more restrictive

Roadmap: The Database System Universe

03.01.2022 88

NoSQL

Databases

Not Only SQL Databases

Graph Databases

Key-Value Stores

Document Stores

Application-Specific Database Systems

Key-Value Stores

• Simple system for storing and retrieving (key,value)-pairs

• Extensions: sorting keys, two-dimensional (key,value)-pairs (aka wide-
column-stores),…

• Additional structures needed to find data fast, e.g. index on keys (e.g. as a
tree structure), filters (e.g. bloom filters), …

• Often used as embedded database

• Data can be organized write-optimized (as they are received) or read-
optimized (in an organized structure, e.g. a tree or a sorted linked list)

→Data is often written into a write-optimized store and later migrated
into a read optimized-store, e.g. when the system load is low

23.12.2021 89

Key-Value Stores

• 3 types of queries: put (add new pair), get (retrieve a pair), delete

• Query language depends on system, usually there is a system-specific API

Example: Memcached via telnet→ It has come a long way since ist time as a
simple caching tool

23.12.2021 90

Add a new KV-pair

set AgeAlice 0 120 1 [Press Enter]

26 [Press Enter]

Retrieve a KV-pair

get AgeAlice

Delete a KV-pair

delete AgeAlice

Syntax of set:

set KEY META_DATA

EXPIRATION_TIME_IN_S

LENGTH_IN_BYTES

[Press Enter]

VALUE

[Press Enter]

Key-Value Stores

Query execution = Lookup of a key or add a key or remove a key

→ Stand-alone engine without optimization layer is not useful

→ Performance of operations depends on used storage layout and index
structure

Example systems:

• Memcached (https://www.memcached.org/, simple, open source, many
supported languages, e.g. C/C++, Java, Python, Perl, Lisp,…)

• Redis (https://redis.io/, open source, many supported languages, e.g.
C/C++, C#, Python, R, VB, Haskell, Prolog, Scala…)

23.12.2021 91

https://www.memcached.org/
https://redis.io/

Roadmap: The Database System Universe

03.01.2022 92

NoSQL

Databases

Not Only SQL Databases

Graph Databases

Key-Value Stores

Document Stores

Application-Specific Database Systems

Collection: People

Blob A

Document Stores

Document stores are fancy key-value-stores:

→ Values are blobs of data

→ Keys are usually assigned automatically

03.01.2022 93

{name: „Bob“,

age: 29,

notes: „on vacation“}

Collection of semi-structured data (e.g. JSON, XML)

→ Data is structured within each document

→ Structure can differ between documents

Blob B

{name: „Alice A.“,

age: 26,

address: „High Street 5“}

Insert data with MongoDB

Create an empty collection with the name

‚people‘: use people

Insert data into collection people:

db.people.insert({name: „Bob“, age: 29,

notes: „on vacation“})

Document Stores

Query language depends on system, e.g. SPARQL, MongoDB Query Language
(MQL), XQuery (for xml documents), DSLs, …

23.12.2021 94

Example: MQL

Show active collection:

db

Show all documents in ‘people’ collection:

db.people.find({})

How many documents are in the ‘people’ collection?

db.people.find({}).count()

Show all documents in the ‘people’ collection where the name is ‘Bob’:

db.people.find({“name”: “Bob”})

Sort all people called ‘Bob’ by their age in descending order:

db.people.find({“name”: “Bob”}).sort({age: -1})

Document Stores

• There are the usual optimizations (index usage, choice of operator implementation, …)

• And there is a speciality of systems supporting full text search: the Inverted Index

Example: „This is a guy called Charlie. He knows this other guy called Bob.“

position word

1 This

2 is

3 a

4 guy

5 called

6 Charlie

7 He

8 knows

9 this

10 other

11 guy

12 called

13 Bob

word position

This 1, 9

is 2

a 3

guy 4, 11

called 5, 12

Charlie 6

He 7

knows 8

other 10

Bob 13

Normal index

Mapping to the content of

a document

Here: position→ word

Inverted index

Mapping from the content

of a document (from

words, sentences, terms,

whole documents,…)

Here: word → position

• Not a new idea → oldest papers I

found are from the 80s

• Progress during the last decades:

compressed versions, support for

different data types, inverted

multi-indexes,…

• Data science is still slow when it

comes to adaptation, e.g. “Real-

time structural motif searching in

proteins using an inverted index

strategy”, Bittrich et al., 2020

Document Stores

Usually rolled out as a full system or an extension for a relational database

Most popular stand-alone document store: MongoDB

Some other systems:

• Microsoft Azure Cosmos DB and Amazon DynamoDB ($$$, supports JSON
documents, cloud-only, supports other models, e.g. key-value, weird
combination of table and document concept)

• Couchbase (open source, claims to scale better than MongoDB for large
systems and many users)

• Oracle NoSQL ($$$$$, supports other models, does not require a cloud)

23.12.2021 96

Roadmap: The Database System Universe

03.01.2022 97

NoSQL

Databases

Not Only SQL Databases

Graph Databases

Key-Value Stores

Document Stores

Application-Specific Database Systems

Application-Specific Database Systems

Example 1: SciDB
• Focuses on life sciences and healthcare
• Manages data as multidimensional arrays stored in columns
• Comes with ist own query language, e.g. scan instead of select *
• Used to be open source, now you have to contact the company for them

to install it on your vm (might not be free)
• Initial system paper: https://ieeexplore.ieee.org/document/6461866

Example 2: Oracles Spatial Database
• Focuses on geospatial data and according tools, e.g. mapping services
• Part of Oracle‘s converged DB
→ Like we learned last time, Oracle can deal with different types of data,
but it comes at a high cost
23.12.2021 98

https://ieeexplore.ieee.org/document/6461866

Application-Specific Database Systems

Example 1: SciDB
• Focuses on life sciences and healthcare
• Manages data as multidimensional arrays stored in columns
• Comes with ist own query language, e.g. scan instead of select *
• Used to be open source, now you have to contact the company for them

to install it on your vm (might not be free)
• Initial system paper: https://ieeexplore.ieee.org/document/6461866

Example 2: Oracles Spatial Database
• Focuses on geospatial data and according tools, e.g. mapping services
• Part of Oracle‘s converged DB
→ Like we learned last time, Oracle can deal with different types of data,
but it comes at a high cost

Chances are there is already a system doing exactly what you need

→ Try to get funding to pay for it

OR

→ Read the system paper so you do not have to invent everything by yourself

Many systems are forked from or inspired by open source and/or free systems.

Try them before starting from scratch.

More specialized DBs

• Time series: InfluxDB (https://github.com/influxdata/influxdb, https://www.influxdata.com/)

• Search engine: Elasticsearch (https://github.com/elastic/elasticsearch, www.elastic.co)

• Spatial data:

• Postgis (https://postgis.net/) → Extension for PostgreSQL

• SpatiaLite (https://www.gaia-gis.it/) → Extension for SQLite (Postgis shows better

benchmark results)

https://ieeexplore.ieee.org/document/6461866
https://github.com/influxdata/influxdb
https://www.influxdata.com/
https://github.com/elastic/elasticsearch
https://www.elastic.co/
https://postgis.net/
https://www.gaia-gis.it/

Roadmap: The Database System Universe

23.12.2021 100

Types in

Relational

Databases

int

int

int

NoSQL

Databases

Distributed

Databases

Heterogeneous

Databases

Roadmap: The Database System Universe

03.01.2022 101

Distributed

Databases Shared Disk and Shared Nothing

Cloud Databases

Federated Databases

Best Practices

Distributed Databases: Shared Disc

04.01.2022 102

Shared (Disk)
Cluster
• Distributed

Database
• One or more

servers have
equal access to
memory (e.g. to
discs)

• Servers don‘t
share their own
memory

Memory Memory Memory

DB

Node

Memory Memory

Application

DB

Node

DB

Node

Local

Mem

Local

Mem

Local

Mem

Network linkNetwork link

Distributed Databases: Shared Nothing

04.01.2022 103

Shared Nothing
• Distributed

Database
• Each node has

exclusive access
to its memory

• Servers don‘t
share their own
memory

Memory Memory Memory

DB

Node

Memory Memory

Application

DB

Node

DB

Node

Local

Mem

Local

Mem Local

Mem

Network linkNetwork link

Distributed Databases: Share Everything

04.01.2022 104

Shared
Everything
• One big system

instead of
multiple (small)
systems →
scale-up
instead od
scale-out

• Disk and main
memory is
shared (NUMA
system)

Memory Memory Memory

DB

Node

Memory Memory

Application

DB

Node

DB

Node

To Share Or Not To Share

Shared Disk Shared Nothing Share Everything

Advantages - Robust in case of node failure (discs can be

accessed by another node)

- Usually easy to set up (if there is already a

shared file system)

- Robust in case of disk failure (frequently

used data can be replicated across

nodes)

- No distributed locking necessary

- High performance if query is executed on

node where most of the data is

- Comes for free with

many systems→ no

additional setup

- Faster than accessing

remote memory

Disadvantages - Simultaneous disk access is a potential

bottleneck

- Overhead to maintain cache consistency

- Requires complex locking mechanisms for

updates

- Partitioning (sharding) of data needs

additional care to get optimal performance

(store data where it is processed)

- Limited scaling

possibilities

- Hardware for large

systems becomes

expensive

Example System(s) - Add-on/Feature of data management

systems, e.g. Microsoft Azure shared disk,

Oracle RAC

- Hybrid Systems (SD & SN), e.g. Snowflake

Couchbase*, MariaDB SkySQL,… Each system working with

NUMA architectures, e.g.

MonetDB, PostgreSQL,

SQL Server,…

Comments Requires shared file system Can be used for backup servers if full

replication is enabled

Usually not noticed by the

user

*Couchbase white paper: http://info.couchbase.com/rs/northscale/images/Couchbase_Architectural_Document_Whitepaper_2015.pdf

Scale-upScale-out

http://info.couchbase.com/rs/northscale/images/Couchbase_Architectural_Document_Whitepaper_2015.pdf

Roadmap: The Database System Universe

03.01.2022 106

Distributed

Databases Shared Disk and Shared Nothing

Cloud Databases

Federated Databases

Best Practices

Cloud DBs

Cloud storages can be regarded as a special kind of shared disc storages with
user management and some additional features:
• The cloud provider is an additional layer between the database and the

application
• Advantages: Cloud provider has to fix bugs, usually high availability due

to large system with redundancies
• Disadvantage: usually no physical access, provider must be trusted with

security issues
• Cloud storage is usually remote whereas shared discs can be local
• A lot of marketing

Edge cloud→ process data close to its location (at the device of the end user)
and make it available in the cloud and/or outsource work to the cloud

107

Cloud DBs

04.01.2022 108

Cloud

Roadmap: The Database System Universe

03.01.2022 109

Distributed

Databases Shared Disk and Shared Nothing

Cloud Databases

Federated Databases

Best Practices

Federated Databases

23.12.2021 110

Memory Memory Memory

DB DB

Memory Memory

DB

Application

Federated

Database
• Multiple

Databases

• Databases are

connected to

one logical

view

• Databases do

not directly

share data

Logical DB

Database

Federated Databases

04.01.2022 111

Shared NothingFederated Database

Multiple independet databases One large distributed database

DB DB DB Node Node Node

Explicit distinction between local and

remote data

→ Not truely distributed, just coupled

→ Remote databases must be

explicitly connected

→ No inconsistent states if individual

databases are disconnected

Data can become inconsistent if a

node fails

→ Different nodes may have

replicated different parts of the data

and cannot synchronize with the

base data when the node if offline

Example: FederatedX (MariaDB)

04.01.2022 112

Step 1: Define the connection details of your (remote) database server

create server ‘myserver' foreign data wrapper 'mysql' options (HOST '127.0.0.1', DATABASE

‘mydb', USER 'root', PASSWORD '', PORT 3306, SOCKET '', OWNER 'root');

- Expects a local MySQL database called

mydbat port 3306

- Connection will be available as ‚myserver‘

Step 2: Send your queries using the defined connection

CREATE TABLE mynewtable (

`id` int (20) NOT NULL,

`name` int (64) NOT NULL)

ENGINE="FEDERATED" DEFAULT CHARSET=latin1

CONNECTION=‘myserver';

Creates a table with two integer type

columns in the federated database

Step 3: Repeat with as many connections and/or queries as you like

Your normal SQL

statement

Roadmap: The Database System Universe

03.01.2022 113

Distributed

Databases Shared Disk and Shared Nothing

Cloud Databases

Federated Databases

Best Practices

Best Practices For Using Distributed DBs

Send one big query instead of several small queries

• Your optimizer will find a fast way to execute it, most probably better
than you could do this

• You save time for transfering results between client and server

If possible, save a copy of your data where you want to process it

• Eliminates transfer between servers, especially useful during peak times

• Hard to control when using a cloud

23.12.2021 114

Roadmap: The Database System Universe

23.12.2021 115

Types in

Relational

Databases

int

int

int

NoSQL

Databases

Distributed

Databases

Heterogeneous

Databases

Heterogeneous Databases

23.12.2021 116

Relational

DB
Graph DB

Key-Value

Store

Application

Interesting blog entry of Michael Stonebraker about Polystores: http://wp.sigmod.org/?p=1629

Polystore
• May or may not

be distributed

• Different kinds

of databases

(e.g. relational

and graph DBs)

• Challenges:

different query

languages,

data models,

query

optimization,…

http://wp.sigmod.org/?p=1629

Polystore

23.12.2021 117

Relational

DB
Graph DB

Key-Value

Store

Application

cast cast

Relational Island Graph Island Key-Value Island

Shim
Shim

Shim
Shim

Shim

Island: An asbtraction

of database systems

which feature the same

data model and query

language

Cast: data

transformation between

different data models

Shim: Query written in a

query language but

might be intended for a

separate island

Common API

Polystore Example: BigDawg

• Currently supports PostgreSQL, SciDB, and Accumulo
• Other systems can be added with a bit of work as long as they fit into one

of the existing islands (else, there is more work included)
• To get started, there is a tutorial which uses docker images
→ https://bigdawg-documentation.readthedocs.io/en/latest/getting-started.html

23.12.2021 118

bdrel(SELECT meal FROM MensaMeals WHERE price<5)

bdarray(filter(MensaMeals, price<5)

bdrel(SELECT meal FROM bdcast(bdarray(filter(MensaMeals, price<5), mytable,

‘meal varchar, price REAL‘, relational))

Relational island, e.g. PostgreSQL (bdrel):

Array island, e.g. SciDB (bdarray):

Selection on data on array island, projection on relational island:

Cast to relational island and provide new table name

(mytable), attributes(meal and price), and attribute

types (varchar and real)

https://bigdawg-documentation.readthedocs.io/en/latest/getting-started.html

Roadmap: The Database System Universe

23.12.2021 119

Types in

Relational

Databases

int

int

int

NoSQL

Databases

Distributed

Databases

Heterogeneous

Databases

