CDCs
CENTER FOR DATA AND COMPUTING
IN NATURAL SCIENCES

Parallel Computing |

Parallelism On CPUs
Annett Ungethiim, 20.01.2022

UH
}h‘. Uni itat Hamb
niversita amburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG Technische Universitat Hamburg-Harburg

CDCs

CDCS Hamburg-X Project (BWFGB) P o oari o comune

IN NATURAL SCIENCES

Associated Partner

= HAW
"= HAMBURG

European

XFEL

TUHH

Technische Universitat Hamburg

1114 Helmholtz-Zentrum
1i:: Geesthacht
Zentrum fiir Material- und Kiistenforschung

Data Science in Hamburg
Helmholtz Graduate School
for the Structure of Matter

H z HELMHOLTZ
Zentrum fir Infektionsforschung

rara A

18.11.2021

CDCS Structure

CDCs
CENTER FOR DATA AND COMPUTING
IN NATURAL SCIENCES

UHH Project Coordinator DESY Project Coordinator
rof. Dr. Matthias Rarey = Prof. Dr. Nina Rohringer
HH Computer Science y DESY / UHH Physics

pokesperson CDCS

Accelerator Physics cDLa
Head: Prof. Fey (TUHH) / Prof. Schlarb (DESY)

Systems Biology

Head: Prof. Griinewald (UHH)/ CDL3

Prof. Baumbach (UHH)

Astro & Particle Physics

Head: Prof. Schleper (DESY)/
Dr. Gaede (UHH)

18.11.2021 Introduction CDCS

_//
CDL1 CDL2

TUHH Project Coordinator

Prof. Dr. Sabine Le Borne
TUHH Mathematics

Computational Core Unit
Head: Prof. Rarey (UHH)/ Prof. Knopp (TUHH)

Photon Science

Head: Dr. Barty (DESY)/
Dr. White (DESY)

CDCS and CDLs in Detail

Accelerator Physics cDbLa |
Head: Prof. Fey (TUHH) / Prof. Schlarb (DESY)

CDCs

CENTER FOR DATA AND COMPUTING
IN NATURAL SCIENCES

Dr. Antonin Sulc Dr. Ahmad Al-Zoubi

Computational Core Unit
CcCcu Head: Prof. Rarey (UHH)/ Prof. Knopp (TUHH)

Systems Biology

Head: Prof. Griinewald (UHH)/ CDL3
Prof. Baumbach (UHH)
CDH CDI—Z Dr. Marie Tolkiehn Dr. Florian Griese Dr. Annett Ungethiim

Scientific-administrative

Management
Astro & Particle o Photon Science
Physics E"‘ . >

Dr. Karen M.-Cantos Dr. Khalique Newaz

Head: Dr. Barty (DESY)/
Dr. White (DESY)

Head: Prof. Schleper (DESY)/
Prof. Gaede (UHH)

Dr. Patrick Connor Dr. Janis Kummer Dr. Lennart Rustige

Dr. Mads Jakobsen N.N

18.11.2021 Introduction CDCS

The CDCS Office Space

CENTER FOR DATA AND COMPUTING
IN NATURAL SCIENCES

liEEEEEE

As a DASHH student you can eNEChe .
get a transponder to the CDCS o a0 g

]

hot desk office space (room 1064)
Ask our secretary Miriam Doring:
miriam.doering@uni-hamburg.de

18.11.2021 Introduction CDCS

mailto:miriam.doering@uni-hamburg.de

Computer Systems CINTER FOR DATA AND COMPUTING

IN NATURAL SCIENCES

18.11.2021 6

Computer Systems CONTER FOR DATA AND COMPUTING

IN NATURAL SCIENCES

Cluster Node Cluster Node

$ Bus system i $ Bus system i

Memory Memory

) 4
Network link (e.g. LAN/WLAN) Cluster

18.11.2021 7

Roadmap

CcDCs
CENTER FOR DATA AND COMPUTING
IN NATURAL SCIENCES

Cluster Node

Cluster Node

Network link (e.g.

LAN/WLAN) Cluster

18.11.2021

Roadmap

CcDCs
CENTER FOR DATA AND COMPUTING
IN NATURAL SCIENCES

QCIuster Node

$ Bus system i

Memory

Cluster Node

Network link (e.g.

LAN/WLAN) Cluster

18.11.2021

CcDCs
Roadmap CENTER FOR DATA AND COMPUTING

IN NATURAL SCIENCES

g Cluster Node Cluster Node

Bigmeyvstem L
Why you will not get the speed up you expected
Memory | Viemory
Network link (e.g. LAN/WLAN) O

18.11.2021 10

Parallelism On A Single Core Tt ror AT Ao compUTNG

IN NATURAL SCIENCES

Core

18.11.2021 i

CPU information

CENTER FOR DATA AND COMPUTING
IN NATURAL SCIENCES

Linux: Iscpu Windows: Task manager

(ctrl + alt +del - task manager
r N > Performance tab)

Prozesse Leistung App-Verlauf Autostart Benutzer Details Dienste

S;%Uafga GH: CPU 11th Gen Intel(R) Core(TM) i5-1145G7 @ 2.60GHz

i % Auslastung
El Arbeitsspeicher
11,0/15,7 GB (70%)

Geschwindighkeit i

Datentrager 0 (C) |\

Level 1 cache (L1) D = 3,23 GHz [

instruction WLAN

cache (Lll) cache (le) ' \G«gﬁ%mm“am L [[___,/ /

\ Ethernet 60 Sekunden
|:| EinB"ﬁﬁ??ﬂKam-s Auslastung [TGEcRwinaigh Basisgeschwindigksit: 1,50 GHz
Level 2 cache (L2) 45% !

GPU D
Intel(R) Iris(R) Xe G... Prozesse Threads Handles Logische Prozessoren: 8
1% 319 4344 198442 Virtualisierung: Aktiviert
é E TT-Cache:

CPU MHz:

Sockets: 1

W,

26:0126:26 . o
Bus system/ /
Last Level Cache (LLC/L3) L1-Cache: 320 KB
L2-Cache: 5.0 MEB
L3-Cache: 2,0MB

18.11.2021 12

Parallelism On A Single Core

CcDCs
CENTER FOR DATA AND COMPUTING
IN NATURAL SCIENCES

Instruction Parallelism

bk

Each ALU processes an
execution pipeline

Usually unnoticed by developers
and users

Ever wondered why some CPUs
are faster than others despite
having the same frequency and
number of cores? - This is one
of the reasons

Data Parallelism

valuelvalue?value3jvalue4| valueljalue2value3jvalues|

ivaluel value2value3 |va|ue4i

Multiple values are processed at
once by one ALU using one
instruction

Data is stored in vector registers,
which can hold more than one value
Not done automatically - Action by
developer or compiler needed

13

Why We Have Data Parallelism On a Single Core? 5. o oum o comrunnc

IN NATURAL SCIENCES

\I()orc

S the empirical regulari l at the 'ml[r:‘, 15
advanceme I\ mpo! Lntfr hr*| of te gical progre

S L'm T'he num])u of tr dllSlSI.O[S on nuuoclups (loul)lcs ev u\ two years [ORSELE
or es approxims very in Data

Tt

5T<>r3<555535355 s % swo Number of Transistors per Core double
prermr SN every two years
R e set Sl e - But we cannot use all of them at the
500000000 P\ e same time because of thermal
100000000 £ constraints
o o RN, - Some transistors are switched off
5000000 e T (,Dark Silicon“?)
. o L - Another scalar addition block doesn‘t
e e T make sense
pes. sy B % - ,Dark® parts of the chip are used for
ks | gitis iR specialized instructions, e.g. for
500 MR T 0 processing vectors

O AV a® a0 A"o up o & & L D L\L\Q PR RSP N S TG TN IR R S
RS S N S A S M A R R RS R RS ’

D i Wikipedia (Wikipsdia ore/ ki Transister count) Year in which the microchip was first introduced

urWorldinData.org rch and data to make progress against the world’s largest f r | CC-BY by the authors Hann

'H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam and D. Burger, "Dark Silicon and the End of Multicore Scaling,"
18.11.2021 in IEEE Micro, vol. 32, no. 3, pp. 122-134, May-June 2012, doi: 10.1109/MM.2012.17. 14

Vectorized Processing CoNrtr For oA AN ConpUTING

IN NATURAL SCIENCES

— | | [
Memory address - --

& Iteration 1 L L
Iteration 1 --
lteration 2 : :
Vectorization teration 2 -
lteration 3 --
lteration 4 Also called Single
Instruction Multiple Data HE B
lteration 5
Final addition: n [| -
[] *

Scalar: 5 instructions
Vectorized: 3 instructions
—High chances for performance gain

18.11.2021 15

Can My Potato CPU Do This?

IN NATURAL SCIENCES

Iscpu on an Intel or AMD CPU:

mmx: Extension from 1997

64-Dbit reqgisters = 2 x 32 float, 2 x 32 bit int, 4x 16 bit int, 8 x 8 bit int
sse*: Extension from 1999

128 bit registers - 2 x 64 bit integer, 2 x double, 4 x float, 4 x 32 bit integer,...
avx(2): 256 bit registers = 4 x 64 bit integer, 4 x double,... 32 x 8 bit integer
avx512*: Different extensions with different functions

512 bit reqgisters - 8 x 64 bit reqgisters...64 x 8 bit integer

Iscpu on an Arm CPU (RaspberryPi, most Android phones,...)

vt vipd3Z2 lpae evtstrm crc32

Neon(v2): 128 bit registers = 2 x 64 bit integer, 2 x double,...
SVE: In newer Arm CPUs (Armv8), register size between 128 bit and 2048 bit

16

SIMD with Julia

CcDCs
CENTER FOR DATA AND COMPUTING
IN NATURAL SCIENCES

Julia tries to apply SIMD automatically

lteration 1 = & function test(myarray::Vector)
res = @
- for 1 in myarray
Iteration 2 L & res+=1i

end

println{res)

|] O
Final addition: -;\ - - end
*

Definition as vector required for
SIMD to work

@code_native test(rand(Int64 , 100000)) ;

xmm 128 bit
ymm 256 bit
zmm 512 bit

xmml = xmmB[2,3,8,1]

Xmme

Still not working? Consider explicit vectorization in Julia:
https://docs.julialang.org/en/vl/base/simd-types/

18.11.2021

17

https://docs.julialang.org/en/v1/base/simd-types/

SIMD With C/C++

CcDCs
CENTER FOR DATA AND COMPUTING
IN NATURAL SCIENCES

g++ tries to apply vectorization
autoatically with -O2 and -O3

succesful compiler log

unsuccesful compiler log

[PLITREITTT A
uncompr.
uncompr.
uncompr.
uncompr.
uncompr.
uncompr.
uncompr.
uncompr.
uncompr.
uncompr.

-

o T IS ITITITITT

-3
:99:
:99:
:99:
199
:99:
:99:
:99:
:99:
:99:
:99:

£ .
29:
29:
29:
29:
29:
29:
29:
29:
29:
29:

nuLe .
note:
note:
note:
note:
note:
note:
note:
note:
note
note:

doesn‘t work, uint32_t works

Reasons can be next to unidentifyable.
Personal favourite: size t as iterator type

18.11.2021

UEI_3LmL — _£F T £ T _£Uy

create vector_type-pointer variable to type: vector(4) long unsigned int wvect
created iftmp.118_12

add new stmt: MEM[(uint64_t *)vectp iftmp.688_96] = vect_ 27.687_95;

—————— >vectorizing statement: i_21 = i 47 + 1;

—————— >vectorizing statement: wectp_S5R.6681_50@
—————— >vectorizing statement: wectp_SR.684_93

vectp_SR.681_89 + 32;
vectp_SR.684_92 + 32;

—————— >vectorizing statement: wectp_iftmp.688_97 = vectp_iftmp.608_96 + 32;
—————— svectorizing statement: if (i 21 »= _22)

: i lition: if (ivtmp_188 >= bnd.598_86)
LOOP VECTORIZED

.cpp:131:46: note:
note:
note:
note:
note:

not vectorized: wvectorization is not profitable.
not vectorized: not suitable for scatter store

bad data references.

not consecutive access *outData_75 = _66;

not vectorized: no grouped stores in basic block.

‘ Use explicit vectorization

18

Explicit SIMD with C/C++ = Step 1 DRk for bATA AN COMPUTING

IN NATURAL SCIENCES

Step 1: Getting data into a SIMD register

int arr[4] = {5,6,7,8};
int const* b=arr;

Uses load/store intrinsics

: oy __mi128ia=_mm_setl epi64x(3); m128|c— _mm_load_si128((__m128i*) b);
!n:a—st; uthZ 2_ta=vdupg n_ub4 (3); f62[x2 _tc = vIdIg ub4{{uint64x2_t*) b);
int c = *b;
- SIMD instrinsic SIMD data types
' Vector register a: Vector register c:
gt
__migdiug*b; 3 3) 6

This won‘t work

There's more on Intel!
Load unaligned data: _mm_loadu_*, Store (unaligned) data: mm_store(u) *, Stream load/store
(bypass cache): _mm_stream *

18.11.2021

19

Explicit SIMD with C/C++ - Step 2 & 3

*Example is intel only

CENTER FOR DATA AND COMPUTING

IN NATURAL SCIENCES

Step 2: Add all values element-wise in a loop

__m128i resultVec =

_mm_setzero_sil28();
___m128i const * dataVecPtr = reinterpret_cast<

for(size_ti=0;i<arraysize/2; ++i) {

resultVec =

}

_mm_add_epi64(resultVec

resultVec

_ _m128i A vector type (SSE)
mm* An SSE intrinsic
An alias for a vector register

_ _m128i * > b;

introduced

The load intrinsic we just

/

Step 3: Copy result vector to memory and aggregate ist elements
alignas(64) uint64 _t resultArray[2 |;

_mm_store_sil28(reinterpret_cast<

int result = resultArray[0] + resultArray[1];

18.11.2021

__m128i * >(&resultArray), resultVec);

_mm_load_sil128(dataVecPtr+i) };

Iteration 1

lteration 2

Step 2

L &

Final addition:

Step 3

20

Explicit SIMD with C/C++ = Step 4

CENTER FOR DATA AND COMPUTING
IN NATURAL SCIENCES

Step 4: Include the right headers and build it
#include <mmintrin.h> ‘ Include file for SSE

: ‘ Throws errors if g++ does not have your chosen
++ -O3 main.cpp —0 mya
J PP yapp SIMD extension in the defaults for your CPU

g++ -O3 —msse4.2 main.cpp —0 myapp ‘ Support for SSE
g++ -O3 —mavx512f main.cpp —0 myapp ‘ Support for AVX512 foundation

g++ -0O3 -flax-vector-conversions main.cpp —0 myapp

Support for Neon on most 64 bit Arm systems,
Use -mfpu=neon on 32 bit systems

18.11.2021 21

Ressources for advanced C++ SIMD Programming .. .o ous o comrorne

IN NATURAL SCIENCES

https://www.intel.com/content/www/us/en/docs/intrinsics-quide/index.html

__m128i _mm_load_sil28 (__m128i const* mem_addr) . - . .
Intel intrinsics guide (mmyx,
sse, avx(2), avx 512)

The header you need to include

Instruction: m

ourdna xmm, m128
CPUID o S5E2 e Intrinsic is available in our example when Iscpu shows this flag

Description

Load 128-bits of integer data from memory into dst. mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be
generated.

https://developer.arm.com/documentation/den0018/a/NEON-Intrinsics
‘ Neon online documentation
https://developer.arm.com/documentation/ihi0073/h

Arm neon intrinsics reference
https://developer.arm.com/documentation/102476/0001

- Arm SVE documentation

https://github.com/MorphStore/TVLLIib

Library which abstracts the architecture
18.11.2021 —> no architecture specific intrinsics needed

22

https://github.com/MorphStore/TVLLib
https://github.com/MorphStore/TVLLib
https://github.com/MorphStore/TVLLib
https://github.com/MorphStore/TVLLib
https://github.com/MorphStore/TVLLib

Vector Li braries ZII?I\(I::ER FOR DATA AND COMPUTING

IN NATURAL SCIENCES

__ml128ic=_mm_add_epi64x(a, b)

int vc=a+b;

SSE::Vector<int>

Vector type int_v
Overloaded +-Operator

Scalar::Vector<int> —T

Matthias Kretz, Volker Lindenstruth: Vc: A C++ library for explicit vectorization. Softw., Pract. Exper. 42 (2012)

pack<int>c=a + b;

int varying(2) c = a + b;

AST Optimization

Vectorized LLVM code with LLVM vector types

Roland Leil3a, Immanuel Haffner, Sebastian Hack:
Sierra: a SIMD extension for C++. WPMVP 2014

UME::SIMD __m128ic=_mm_add_epi64x(a, b)

SIMDVec2 64ic=a+b 4T
e N X
Machine code
Przemyslaw Karpinski, John McDonald: A high-performance portable

abstract interface for explicit SIMD vectorization. PMAM 2017 Pierre Estérie, Joel Falcou, Mathias Gaunard, Jean-Thierry Lapresteé:
Boost.SIMD: generic programming for portable SIMDization. WPMVP 2014

Code Generation

A 4

CcDCs
Roadmap CENTER FOR DATA AND COMPUTING

IN NATURAL SCIENCES

Core || Core || Core
CPU

[Core]

Core

-
T\

[Core

18.11.2021 24

Core # Core

CENTER FOR DATA AND COMPUTING
IN NATURAL SCIENCES

Tasks are split into threads and distributed across the cores (=multithreading)

Core # Core

A physical core can (often) run more than one thread at the same time >
logical cores through hyperthreading

Windows Task Manager

Sockets: 1
Kerne:

Logische Prozessoren: &

—> 4 physical cores a 2 threads = 8 logical cores

18.11.2021 25

Hyperthreading

CcDCs
CENTER FOR DATA AND COMPUTING
IN NATURAL SCIENCES

Advantages

Threads on the same physical core
use the same ressources

—> Fast exchange of data and fast
ressource switching

Lower probability of idle CPU time
—> Stalling cycles can be filled with
computation by another thread

Disadvantages

Threads on the same physical core
use the same ressources

—> Threads have to share
bandwidth and cache space

Higher probability of contentions
(both threads try to access the
same ressource)

- Useful when your threads exchange data frequently but do not share
other ressources (e.g. they do not access the same array)
- Not useful when all threads access the same ressources

18.11.2021

26

Thread Pinning |

CENTER FOR DATA AND COMPUTING
IN NATURAL SCIENCES

It is possible to enforce on which cores a thread is allowed to run

From the outside: numactl (might not be available on clusters because of
security reasons)

numactl --physcpubind=0 myProgram ‘ myProgram will run on core 0

cat /sys/devices/system/cpu/cpuO/topology/thread_siblings_list

‘ Tells you which logical cores are on the same physical core as core 0
Can be used to disable hyperthreading

numactl --physcpubind=0,2 myProgram ‘ myProgram can run on core 0 and 2

18.11.2021 27

Thread Pinning

CENTER FOR DATA AND COMPUTING
IN NATURAL SCIENCES

From the inside: Depends on how you create your threads
—>Search term: Thread affinity
Common approach: OpenMP

export GOMP_CPU_AFFINITY=0-2:2” Binds the threads to core 0 and core 2
OR

export OMP_PLACES="{0}:2:2" OMP_PLACES overwrites GOMP_CPU_AFFINITY
‘ Works only if your implementation uses OpenMP

18.11.2021 28

CDCs

OpenMP = Loops CENTER FOR DATA AND COMPUTING

IN NATURAL SCIENCES

Simple way to parallelize C/C++ and Fortran | Requires linking with -fopenmp
-=> Not linking will not throw errors

but you will not get a parallel

Equivalent to export OMP_NUM_THREADS=8
- But can override OMP_NUM_THREADS

finclude <omp.h> e
int main(){ lJ
omp_set_num_threads(8);

Parallelizes the following for-loop such that there

- Is one thread per loop
- If less than 8 cores are assigned, some

#pragma omp parallel for

for (inti=0; I<8; i++){ threads run sequential insteadof parallel
//[do something - Explicitly defining the number of threads is
} optional

18.11.2021 29

OpenMP - Parallel Sections

CcDCs
CENTER FOR DATA AND COMPUTING
IN NATURAL SCIENCES

Define which pieces of code can run in parallel (in case it‘s not a loop)

#pragma omp parallel sections

{

18.11.2021

#pragma omp section

{ //do something

}

#pragma omp section

{ //do something else in parallel

}

Creates two threads which can run in
parallel (if at least two cores are
assigned)

- There must be no dependencies
between the sections, e.g. no
commonly used variables

Multi-threading in Julia is very OpenMP-like:
https://docs.julialang.org/en/v1l/manual/multi-

threading/#man-multithreading

30

https://docs.julialang.org/en/v1/manual/multi-threading/#man-multithreading

Roadmap

CcDCs
CENTER FOR DATA AND COMPUTING
IN NATURAL SCIENCES

Q Cluster Node

A node can either feature one

Core || Core || Core

CPU

(core | core][core |

or multiple CPUs on multiple
sockets

» All core son all CPUs can
access all memory modules
on the same node - NUMA
system (Non Uniform Memory
Access)

"— NUMA node

18.11.2021

31

NUMA Systems

CcDCs
CENTER FOR DATA AND COMPUTING
IN NATURAL SCIENCES

’

E PR R ([Tag

(DTSSR L E a1 8 (UL

[L L o S v—

TAL: .
| P Main

Memory CPU

On-line CPU(s) last:
hread(s) per core:
Core(s) per socket:
socket(s):

node(s) :

node® CPU(s): 0-23,96-119

nodel CPU(s): 24-47,120-143
node2 CPU(s): 48-71,144-167
node3 CPU(s): 72-95,168-191

54 tlu dlu s
i

32

Multithreading In NUMA Systems X Tex ror bATa A ConpUTING

IN NATURAL SCIENCES

Implementation-wise = Just like on a single CPU, you just have more cores
available

Thread-pinning = It often makes sense to pin threads to the same NUMA
node (if that node has enough cores)

numactl --cpunodebind=0 myProgram ‘ myProgram will run on node 0

No knowledge necessary about the ID of the cores on each node

numactl --cpunodebind=0 --membind=0 myProgram

‘ myProgram will run on node 0 AND only allocate memory on node O

18.11.2021 33

CcDCs
Roadmap CENTER FOR DATA AND COMPUTING

IN NATURAL SCIENCES

Cluster Node Cluster Node

Core || Core || Core

[Core J[Core][Core]

Memory Memory

Network link (e.g. LAN/WLAN) O
18.11.2021 34

Message Passing Interface (MPI)

CENTER FOR DATA AND COMPUTING

IN NATURAL SCIENCES

Popular solution for clusters

include <mpi.h>
int main(){

* Build with mpicc main.c - myProgram

linked explicitly
* Run with mpirun —np 2 myProgram

MPI_init (NULL,NULL); - Runs myProgram in two diffeent processes

int id;

—> If building with another compiler MPI library must be

int err = MP1_Comm_rank(MPI_COMM_WORLD, &id);

if (id==0) then{

//do something

}
If (id==1) then{

//do something else

}
MPI1_Finalize();

18.11.2021

Communication between processes
via MPI_Send and MPI_Recv.

- MPI_Recv blocks a process until
data transfer is done

Available for many programming languages, e.g. C/C++,
Fortran, Pythn, R, Haskell, Julia...
Also works on a single node, but might be overkill

35

CcDCs
Roadmap CENTER FOR DATA AND COMPUTING

IN NATURAL SCIENCES

Cluster Node Cluster Node

Core || Core || Core

[Core J[Core J[Core]

?Why you will not get the speed up you expected
Memory Memory

18.11.2021 36

Voltage Scaling

CcDCs
CENTER FOR DATA AND COMPUTING
IN NATURAL SCIENCES

&

max. core frequency (GHz)
=

Intel Xeon 6130, manufacturer's information

&

0
1

2 3 4 5 6 7 8 9 10 MM 12 13 14

#l active cores

18.11.2021

15 16

w0 & TR) RS S\bxE |2 (512 bit)

1.8
GHz

Active transistors produce

heat

- Depends on density of
active transistors and
frequency

—> Physical constraints limit
the ability to conduct
heat away

—> Core frequency is
requlated down (via
voltage) to reduce heat

- Speed-up is not
proportional to #cores

37

context SWitChing EIEJI\(I::ER FOR DATA AND COMPUTING

IN NATURAL SCIENCES

More threads than cores: Instructions and data of a thread are swapped out
of the CPU to load another thread - Context Switching

= As we know, bandwidth for this swap is limited

- Frequent swaps block your data bus

Operating system place threads on cores according to their own heuristics,

e.g. round robin after fixed amount of time - This is done to prevent CPU
from overheating in one region, but:

- It introduces additional context switches

—> The new core might be further away from where the data is written originally

Never spawn more threads than available cores & pin your threads to

the same CPU(s) or NUMA node(s) if possible
18.11.2021 38

Spawn Overhead EIEJI\:::ER FOR DATA AND COMPUTING

IN NATURAL SCIENCES

On CPUs, spawning of threads comes with an overhead
- Short running threads, e.g. only a few ms, do not profit from multithreading

- Create a thread pool and reuse the same threads for different tasks instead of
constantly spawning new threads

—> Put all tasks into a queue and let the threads pull a task when they are done with
the last one

core 1l

create threads

- taSk 1 I I I I
close threads

create threads

run task 2

close threads

corel

create threads
run task 1

run task 2
close threads

39

The Memory Hiera rChy EIEJI\CI:ER FOR DATA AND COMPUTING

IN NATURAL SCIENCES

Size Type Bandwidth
A 1 gen_eral LS (05 i Registers At CPU clock speed
registers on an x86
<1MB L1 cache A few 100 — a few 1000 GB/s
KB to MB 't initin1 00 GB/s

The maximum degree of (useful)
parallelism is limited by memory access! ZSSEUBEEE
= You cannot keep 20 cores busy if they [EEos
all rely on frequent disc access
- Random memory access increases the EBASGIESING
issue by an order of magnitude likely <1 GB/s

Disc (hdd) < 200 MB/s v

!

18.11.2021 Persistent memory 40

The Memory BOttIeneCk EEDI\CI:ER FOR DATA AND COMPUTING

IN NATURAL SCIENCES

htop:

Solution: Copy your data to main memory before accessing it

loop over lines { open file The same goes for writing
open file - data = get file contents —> Collect data in an
read line from file close file array, struct, or
do something with line 100p over lines{ dataframe
close file read line from data - Write data to disc
} do something with line when everything is
} finished

18.11.2021 4]

Amdahl‘s Law And Gustafson‘s Law e ot oA A ComuTG

IN NATURAL SCIENCES

Not every part of a problem can be parallelized

Amdahl's Law: Fixed problem size Gustafson’s Law: Growing Problem size

120

e
=

18

16

14

i | This was theory.
o = g Reality can look like this.

Speedup

0 20 40 60 80 100 120

mmmmmmmmmmmmmmm
mmmmmmmmmmmmm

mmmmmmmmmm
wwwwwww Number of Processors - P

Number of processors

Minimum execution time will not go below execution The speedup increases along with the number of
time of the not parallelizable part, regardless of how cores if the workload (problem size) of the
many cores we use. parallelizable part increases, too

*graphs from wikipedia

Too Many Threads Tt ror AT Ao compUTNG

IN NATURAL SCIENCES

Main memory can deliver data to more threads in parallel than disc, but it is
still limited

Performance decreases when bandwidth is saturated - Hyperthreads not useful

m
E
o 10
write, vector width = 256 % 3.5x10 [[
store mode § 310" - Scheduling concurrent
200 . o
- aianed B om0 data access (a kind of ® AVX-512 (512 bit)
= — Sslream . . i
S50 . $ contention) does not ® AVX2 (256 bit)
& unaligned 2 00 L 1 * SSE (128 bit)
O, g x10 L come for free \ 2
= 100 = o . © No vectorization
3 E 15x10"° - o e
3 3 e . .
50 CC> 10 O . e - - Wl Mgy
110" O N, . g,
% . i T
2 9 D,
0)) 4 N 5x10% =

Mindless parallelization can lead to performance loss
Sequential write —> Before starting the 20 h run: Try a minimal example of
Xeon Gold (the s . . .
Maxwell, 2 threag your solution with different thread counts

18.11.2021 43

CcDCs
CENTER FOR DATA AND COMPUTING
IN NATURAL SCIENCES

Exercise

UH
}'ﬁi Uni itat Hamb
niversita amburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG Technische Universitat Hamburg-Harburg

Exercise: Parallelizing Run Length Encoding

CENTER FOR DATA AND COMPUTING

IN NATURAL SCIENCES

Uncompressed sequence of integer values

[10|10|5|5|5|8|8|8l8|

Each run

consists of

N | 7
\\\
_q Iﬁ’
RLE run

compresseddata’ e l 2 | S | 3 ‘ 8 | 4 | value

run
length

(L J \ J
| !

run run run

. Read data from a single file into

an array

. lterate over array and count

duplicates

. Write all run values and run

lengths into a file on disc

a) Which of these tasks do you think are parallelizable?

b) Which parts are parallelizable but will not profit much from

parallelization?

c) Vectorization, hyperthreading (multiple threads on a core),
multithreading (multiple threads on a CPU in general), or message

passing (multiple nodes)?

