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The CDCS Office Space
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As a DASHH student you can
get a transponder to the CDCS
hot desk office space (room 1064)
Ask our secretary Miriam Döring:
miriam.doering@uni-hamburg.de

mailto:miriam.doering@uni-hamburg.de
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Parallelism On A Single Core
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CPU information
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Core

instruction

cache (L1i)

data

cache (L1d)

Level 1 cache (L1)

Registers

Arithmetic logic

unit (ALU)

Level 2 cache (L2)

Linux: lscpu Windows: Task manager

(ctrl + alt +del → task manager

→ Performance tab)

Bus system/

Last Level Cache (LLC/L3)



Parallelism On A Single Core
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ALU ALU ALU ALU

Instruction Parallelism

• Each ALU processes an 

execution pipeline

• Usually unnoticed by developers

and users

• Ever wondered why some CPUs 

are faster than others despite

having the same frequency and 

number of cores? → This is one

of the reasons

Data Parallelism

value1 value2 value3 value4 value1 value2 value3 value4

ALU

value1 value2 value3 value4

• Multiple values are processed at 

once by one ALU using one

instruction

• Data is stored in vector registers, 

which can hold more than one value

• Not done automatically→ Action by

developer or compiler needed



Why We Have Data Parallelism On a Single Core?
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Number of Transistors per Core double 

every two years

→ But we cannot use all of them at the

same time because of thermal

constraints

→ Some transistors are switched off 

(„Dark Silicon“1)

→ Another scalar addition block doesn‘t

make sense

→ „Dark“ parts of the chip are used for

specialized instructions, e.g. for

processing vectors

1H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam and D. Burger, "Dark Silicon and the End of Multicore Scaling," 

in IEEE Micro, vol. 32, no. 3, pp. 122-134, May-June 2012, doi: 10.1109/MM.2012.17.



Vectorized Processing
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Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Array in memory:

Iteration 1

Iteration 2

Final addition:

Memory address

Scalar: 5 instructions

Vectorized: 3 instructions
→High chances for performance gain

Also called Single 

Instruction Multiple Data 

(SIMD)

Vectorization



Can My Potato CPU Do This?
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YES!

lscpu on an Intel or AMD CPU:

lscpu on an Arm CPU (RaspberryPi, most Android phones,…)

mmx: Extension from 1997

64-bit registers → 2 x 32 float, 2 x 32 bit int, 4x 16 bit int, 8 x 8 bit int

sse*: Extension from 1999

128 bit registers → 2 x 64 bit integer, 2 x double, 4 x float, 4 x 32 bit integer,…

avx(2): 256 bit registers → 4 x 64 bit integer, 4 x double,… 32 x 8 bit integer

avx512*: Different extensions with different functions

512 bit registers → 8 x 64 bit registers…64 x 8 bit integer

Neon(v2): 128 bit registers → 2 x 64 bit integer, 2 x double,…

SVE: In newer Arm CPUs (Armv8), register size between 128 bit and 2048 bit



SIMD with Julia
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Still not working? Consider explicit vectorization in Julia: 

https://docs.julialang.org/en/v1/base/simd-types/

xmm 128 bit

ymm 256 bit

zmm 512 bit

@code_native test(rand(Int64 , 100000)) ;Julia tries to apply SIMD automatically

Definition as vector required for

SIMD to work

https://docs.julialang.org/en/v1/base/simd-types/


SIMD With C/C++
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g++ tries to apply vectorization

autoatically with -O2 and -O3

succesful compiler log

unsuccesful compiler log

Reasons can be next to unidentifyable.

Personal favourite: size_t as iterator type 

doesn‘t work, uint32_t works
Use explicit vectorization



Explicit SIMD with C/C++ → Step 1
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C-Style (scalar) Vectorized

int arr[4] = {5,6,7,8};

int const* b=arr;

int a = 3;

int c = *b; //sets c to 5

__m128i a = 3;

__m128i c = *b;

This won‘t work

Uses load/store intrinsics

__m128i a = _mm_set1_epi64x(3); __m128i c = _mm_load_si128((__m128i*) b);

uint64x2_t a = vdupq_n_u64 (3); uint64x2_t c = vld1q_u64((uint64x2_t*) b);

3 3

Vector register a:

5 6

Vector register c:

There‘s more on Intel! 

Load unaligned data: _mm_loadu_*, Store (unaligned) data: _mm_store(u)_*, Stream load/store

(bypass cache): _mm_stream_*

SSE

NEON

Step 1: Getting data into a SIMD register

SIMD instrinsic SIMD data types



Explicit SIMD with C/C++ → Step 2 & 3
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__m128i resultVec = _mm_setzero_si128( ); 

__m128i const * dataVecPtr = reinterpret_cast< __m128i * > b; 

for( size_t i = 0; i < arraysize/2; ++i ) {

resultVec = _mm_add_epi64( resultVec, _mm_load_si128( dataVecPtr+i ) );

}

__m128i A vector type (SSE)

_mm_* An SSE intrinsic

resultVec An alias for a vector register

Step 2: Add all values element-wise in a loop

The load intrinsic we just 

introduced

alignas(64) uint64_t resultArray[ 2 ];

_mm_store_si128( reinterpret_cast< __m128i * >( &resultArray ), resultVec );

int result = resultArray[ 0 ] + resultArray[ 1 ];

Step 3: Copy result vector to memory and aggregate ist elements

Step 2

Step 3

*Example is intel only



Explicit SIMD with C/C++ → Step 4
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Step 4: Include the right headers and build it

g++ -O3 main.cpp –o myapp Throws errors if g++ does not have your chosen

SIMD extension in the defaults for your CPU

#include <mmintrin.h> Include file for SSE

g++ -O3 –msse4.2 main.cpp –o myapp Support for SSE

g++ -O3 –mavx512f main.cpp –o myapp Support for AVX512 foundation

g++ -O3 -flax-vector-conversions main.cpp –o myapp

Support for Neon on most 64 bit Arm systems,

Use -mfpu=neon on 32 bit systems



Ressources for advanced C++ SIMD Programming
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https://developer.arm.com/documentation/den0018/a/NEON-Intrinsics

https://developer.arm.com/documentation/ihi0073/h

Neon online documentation

Arm neon intrinsics reference

https://developer.arm.com/documentation/102476/0001

Arm SVE documentation

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

https://github.com/MorphStore/TVLLib

Library which abstracts the architecture

→ no architecture specific intrinsics needed

Intrinsic is available in our example when lscpu shows this flag

The header you need to include
Intel intrinsics guide (mmx, 

sse, avx(2), avx 512)

https://github.com/MorphStore/TVLLib
https://github.com/MorphStore/TVLLib
https://github.com/MorphStore/TVLLib
https://github.com/MorphStore/TVLLib
https://github.com/MorphStore/TVLLib


LLVM

P
ro

to

Pierre Estérie, Joel Falcou, Mathias Gaunard, Jean-Thierry Lapresté: 

Boost.SIMD: generic programming for portable SIMDization. WPMVP 2014

Roland Leißa, Immanuel Haffner, Sebastian Hack: 

Sierra: a SIMD extension for C++. WPMVP 2014

Matthias Kretz, Volker Lindenstruth: Vc: A C++ library for explicit vectorization. Softw., Pract. Exper. 42 (2012)

Przemyslaw Karpinski, John McDonald: A high-performance portable 

abstract interface for explicit SIMD vectorization. PMAM 2017

int_v c = a + b;

SSE::Vector<int>

Scalar::Vector<int>

Vector type int_v

Overloaded +-Operator

__m128i c = _mm_add_epi64x(a, b)

int c = a + b;

pack<int> c= a + b;

AST Optimization

Code Scheduling

Code Generation

Use fused instructions if possible

Split AST if scalar operations are necessary

Translate to hardware specific function calls

Machine code

int varying(2) c = a + b;

Vectorized LLVM code with LLVM vector types

Split vectors into hardware specific vector type

SIMDVec2_64i c = a + b

UME::SIMD __m128i c = _mm_add_epi64x(a, b)

Vector Libraries
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Core ≠ Core

Tasks are split into threads and distributed across the cores (=multithreading)

Core ≠ Core

A physical core can (often) run more than one thread at the same time →
logical cores through hyperthreading
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lscpu: Windows Task Manager

→ 4 physical cores à 2 threads = 8 logical cores



Hyperthreading

Advantages

• Threads on the same physical core
use the same ressources
→ Fast exchange of data and fast 
ressource switching

• Lower probability of idle CPU time 
→ Stalling cycles can be filled with
computation by another thread
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Disadvantages

• Threads on the same physical core
use the same ressources
→ Threads have to share
bandwidth and cache space

• Higher probability of contentions
(both threads try to access the
same ressource)

→ Useful when your threads exchange data frequently but do not share

other ressources (e.g. they do not access the same array)

→ Not useful when all threads access the same ressources



Thread Pinning I

It is possible to enforce on which cores a thread is allowed to run

From the outside: numactl (might not be available on clusters because of
security reasons)
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numactl --physcpubind=0 myProgram

numactl --physcpubind=0,2 myProgram

cat /sys/devices/system/cpu/cpu0/topology/thread_siblings_list

Tells you which logical cores are on the same physical core as core 0

Can be used to disable hyperthreading

myProgram will run on core 0

myProgram can run on core 0 and 2



Thread Pinning II

From the inside: Depends on how you create your threads

→Search term: Thread affinity

Common approach: OpenMP
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export GOMP_CPU_AFFINITY=“0-2:2” Binds the threads to core 0 and core 2

export OMP_PLACES=“{0}:2:2“

OR

OMP_PLACES overwrites GOMP_CPU_AFFINITY

Works only if your implementation uses OpenMP



OpenMP - Loops

Simple way to parallelize C/C++ and Fortran
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#include <omp.h>

int main(){

omp_set_num_threads(8);

#pragma omp parallel for

for (int i=0; i<8; i++){

//do something

}

}

Requires linking with –fopenmp

→ Not linking will not throw errors

but you will not get a parallel 

application

Parallelizes the following for-loop such that there

is one thread per loop

→ If less than 8 cores are assigned, some

threads run sequential insteadof parallel

→ Explicitly defining the number of threads is

optional

Equivalent to export OMP_NUM_THREADS=8

→ But can override OMP_NUM_THREADS



OpenMP - Parallel Sections

Define which pieces of code can run in parallel (in case it‘s not a loop)
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#pragma omp parallel sections

{

#pragma omp section

{ //do something

}

#pragma omp section

{ //do something else in parallel

}

}

Creates two threads which can run in 

parallel (if at least two cores are

assigned)

→ There must be no dependencies

between the sections, e.g. no

commonly used variables

Multi-threading in Julia is very OpenMP-like: 

https://docs.julialang.org/en/v1/manual/multi-

threading/#man-multithreading

https://docs.julialang.org/en/v1/manual/multi-threading/#man-multithreading


Cluster Node

Roadmap
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Memory

Bus system

CPU

Core

3 • A node can either feature one

or multiple CPUs on multiple 

sockets

• All core son all CPUs can

access all memory modules

on the same node → NUMA 

system (Non Uniform Memory 

Access)

NUMA node



NUMA Systems

32

CPU
Main 

Memory

lscpu:



Multithreading In NUMA Systems

Implementation-wise → Just like on a single CPU, you just have more cores
available

Thread-pinning → It often makes sense to pin threads to the same NUMA 
node (if that node has enough cores)
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numactl --cpunodebind=0 myProgram myProgram will run on node 0

No knowledge necessary about the ID of the cores on each node

numactl --cpunodebind=0 --membind=0 myProgram

myProgram will run on node 0 AND only allocate memory on node 0
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Message Passing Interface (MPI)

Popular solution for clusters
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include <mpi.h>

int main(){

MPI_init (NULL,NULL);

int id;

int err = MPI_Comm_rank(MPI_COMM_WORLD, &id);

if (id==0) then{

//do something

}

If (id==1) then{

//do something else

}

MPI_Finalize();

}

Communication between processes

via MPI_Send and MPI_Recv.

→ MPI_Recv blocks a process until

data transfer is done

• Build with mpicc main.c - myProgram

→ If building with another compiler MPI library must be

linked explicitly

• Run with mpirun –np 2 myProgram

→ Runs myProgram in two diffeent processes

Available for many programming languages, e.g. C/C++, 

Fortran, Pythn, R, Haskell, Julia…

Also works on a single node, but might be overkill



Cluster

Cluster Node
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Memory
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Memory

Bus system Bus system
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Why you will not get the speed-up you expected
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Voltage Scaling
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Intel Xeon 6130, manufacturer‘s information

1.8 

GHz
1.0 

GHz

Active transistors produce

heat

→ Depends on density of

active transistors and 

frequency

→ Physical constraints limit

the ability to conduct

heat away

→ Core frequency is

regulated down (via 

voltage) to reduce heat

→ Speed-up is not 

proportional to #cores



Context Switching

More threads than cores: Instructions and data of a thread are swapped out 
of the CPU to load another thread→ Context Switching

→ As we know, bandwidth for this swap is limited

→ Frequent swaps block your data bus

Operating system place threads on cores according to their own heuristics, 
e.g. round robin after fixed amount of time → This is done to prevent CPU 
from overheating in one region, but: 

→ It introduces additional context switches

→ The new core might be further away from where the data is written originally
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Never spawn more threads than available cores & pin your threads to

the same CPU(s) or NUMA node(s) if possible



Spawn Overhead

On CPUs, spawning of threads comes with an overhead

→ Short running threads, e.g. only a few ms, do not profit from multithreading

→ Create a thread pool and reuse the same threads for different tasks instead of
constantly spawning new threads

→ Put all tasks into a queue and let the threads pull a task when they are done with
the last one

39

create threads

create threads

close threads

close threads

run task 1

run task 2

core 1 2 3 4

create threads

close threads

run task 1

run task 2

core 1 2 3 4



The Memory Hierarchy
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Registers At CPU clock speed

L1 cache A few 100 – a few 1000 GB/s

A few 100 GB/sL2 cache

Main memory < 20 GB/s per module

Disc (ssd) Around 5 GB/s

Disc (hdd) < 200 MB/s

SD card (SDHC, SDXC, 

SDUC)
< 4 GB (with SD Express), in 

reality most likely < 1 GB/s

16 general purpose 64 bit

registers on an x86

<1MB

KB to MB range

GB to TB range

Persistent memory

Size Type Bandwidth

The maximum degree of (useful) 

parallelism is limited by memory access!

→ You cannot keep 20 cores busy if they

all rely on frequent disc access

→ Random memory access increases the

issue by an order of magnitude



The Memory Bottleneck
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This is all your CPU can do while

waiting for data from disc or network
htop:

Solution: Copy your data to main memory before accessing it

loop over lines {

open file

read line from file

do something with line

close file

}

open file

data = get file contents

close file

loop over lines{

read line from data

do something with line

}

The same goes for writing

→ Collect data in an 

array, struct, or

dataframe

→ Write data to disc

when everything is

finished



Amdahl‘s Law  And Gustafson‘s Law

Not every part of a problem can be parallelized

*graphs from wikipedia

Amdahl‘s Law: Fixed problem size Gustafson‘s Law: Growing Problem size

Minimum execution time will not go below execution

time of the not parallelizable part, regardless of how

many cores we use.

The speedup increases along with the number of

cores if the workload (problem size) of the

parallelizable part increases, too

This was theory.

Reality can look like this.



Too Many Threads

Main memory can deliver data to more threads in parallel than disc, but it is
still limited
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Performance decreases when bandwidth is saturated → Hyperthreads not useful

Sequential write with AVX2 on an Intel 

Xeon Gold (the same we can use on 

Maxwell, 2 threads per core)
Data compression on an Intel Xeon Phi (4 threads per core, 2 cores share L2 cache)

Mindless parallelization can lead to performance loss

→ Before starting the 20 h run: Try a minimal example of

your solution with different thread counts

Scheduling concurrent

data access (a kind of

contention) does not 

come for free



Exercise



Exercise: Parallelizing Run Length Encoding

a) Which of these tasks do you think are parallelizable? 

b) Which parts are parallelizable but will not profit much from
parallelization?

c) Vectorization, hyperthreading (multiple threads on a core), 
multithreading (multiple threads on a CPU in general), or message
passing (multiple nodes)? 

45

1. Read data from a single file into

an array

2. Iterate over array and count

duplicates

3. Write all run values and run

lengths into a file on disc


