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What are symmetries?
The traditional definition is that in the classical theory the
symmetries of a theory are the group of transformations of the
fields in the Lagrangian that leave the action invariant (with
suitable boundary conditions).

In the quantum theory we
additionally ask for invariance of the measure (anomaly invariance).

Complications have come into focus during the last few years:
There are anomaly constraints that only become visible in
non-trivial spacetime topologies, going beyond the usual
non-invariance of the path integral measure.
Symmetries need not act on fields, they might act on extended
operators.
Symmetries might not form a group. For instance, we can
have symmetry generators which do not have an inverse.
We might not have a Lagrangian!
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What are symmetries?

We would like to have a notion of symmetry that encompasses all
these recent developments.

So: what is a symmetry?

The right answer (without gravity) seems to be some version of:

Symmetries are categorical
The symmetries and anomalies of d-dimensional theories are
encoded in a (d+ 1)-dimensional topological field theory.

In this talk I would like to:
Motivate this answer.
Identify these TFTs in some simple M-theory examples.
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Discrete symmetries: an apology

In this talk I will focus (mostly) on discrete symmetries in D > 2.
This is really because the general picture seems clearer there.
(Gauging a discrete symmetry does not change local dynamics.)

[Can we extract the U(1) behaviour from our understanding of Zn
for all n?]

But there are virtues to discrete symmetries too: they can have
much more interesting behaviour. For instance: [Córdova,
Dumitrescu, Intriligator ’16] show that there are no continuous 2-form
symmetries in 5d or 6d SCFTs, while many examples of theories with
discrete 2-form symmetries are known by now.
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What are anomalies?

The textbook view on anomalies is that anomalies arise whenever
we have a symmetry of the classical Lagrangian that is not a
symmetry of the full quantum theory.

This is a problem whenever we are talking about gauge
transformations: if a gauge transformation is anomalous then the
theory is inconsistent.

(For global symmetries anomalies are a good
thing, they tell us information about the theory.)

The canonical example is the theory of a Weyl fermion in four
dimensions charged under a U(1) gauge symmetry

L =
1

2g
FµνFµν +

1

2
ψ†(i∂µ −Aµ)σµψ

which looks fine classically, but is inconsistent
quantum-mechanically.
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A new approach to anomalies

One concise way to state the problem is that it might not be
possible to define the phase of the partition function in a well
defined way, as a function of the background fields modulo gauge
invariance:

Z[Ag] = eiA(A,g)Z[A] .

Recent developments [Dai, Freed ’94], [Witten ’15] have shed new light
on this old topic.

These recent developments are geared towards condensed matter, but
there are also interesting consequences for high energy physics.
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The Dai-Freed viewpoint on anomalies

Consider the case that your space-time Xd is the boundary of some
manifold Yd+1, over which all the relevant structures on Xd extend.

We define the path integral of a fermion ψ on Xd as [Dai, Freed ’04]

Zψ = |Zψ|e−2πi η(DYd+1
)

with

η(DYd+1
) =

dim kerDYd+1
+
∑
λ6=0 sign(λ)

2
.

[*] For the experts, this is the same η that appears in the APS index theorem.
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Why is this prescription useful
The η invariant is, in general, very difficult to compute. We only
know expressions for it in a handful of examples.

Nevertheless, it has very nice properties: if we change the
orientation of the manifold the phase of the partition function
changes sign:

e2πi η(DA) = e−2πi η(DA)

and it is “local”, in the sense that η behaves nicely under gluing:

e2πiη(DA)e2πi η(DB) = e2πi η(DA+B)
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The Dai-Freed viewpoint on anomalies
Anomalies, in this language, come from situations in which the
phase of the partition function depends on the choice of Yd+1:

e−2πi η(DYd+1
) 6= e

−2πi η(DY ′
d+1

)
(1)

even if ∂Yd+1 = ∂Y ′d+1 = Xd.

Gluing Yd+1 and Y ′d+1 over Xd to form the closed manifold Wd+1,
we find that the partition function is well defined as a function of
the fields on Xd only if on every such Wd+1

e−2πi η(DWd+1
) = e−2πi η(DYd+1

)/e
−2πi η(DY ′

d+1
)

= 1 (2)



Introduction Anomalies Higher form symmetries The symmetry theory QG Conclusions

The Dai-Freed viewpoint on anomalies
Anomalies, in this language, come from situations in which the
phase of the partition function depends on the choice of Yd+1:

e−2πi η(DYd+1
) 6= e

−2πi η(DY ′
d+1

)
(1)

even if ∂Yd+1 = ∂Y ′d+1 = Xd.

Gluing Yd+1 and Y ′d+1 over Xd to form the closed manifold Wd+1,
we find that the partition function is well defined as a function of
the fields on Xd only if on every such Wd+1

e−2πi η(DWd+1
) = e−2πi η(DYd+1

)/e
−2πi η(DY ′

d+1
)

= 1 (2)



Introduction Anomalies Higher form symmetries The symmetry theory QG Conclusions

The Dai-Freed viewpoint on anomalies

The theory with partition function

ZA(Yd+1, A) = e2πi η(DA)

is an example of a topological field theory in (d+ 1)-dimensions,
known in this context as the anomaly theory.

We say that a theory in d-dimensions is anomaly-free if its anomaly
theory (defined in (d+ 1)-dimensions) is trivial.

So when talking about anomalies, it is very natural to consider
topological theories in one dimension higher. Later on I will give
examples of anomaly theories for 1-form symmetries.
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Classifying N = 4 theories

Known N = 4 theories in four dimensions are classified by a choice
of gauge group G (with algebra g), and some discrete θ angles.
[Aharony, Seiberg, Tachikawa ’13]

A prototypical example is su(2)→ {SU(2), SO(3)± = (SU(2)/Z2)±}.
[Gaiotto, Moore, Neitzke ’10]

One can distinguish the different global forms by studying the partition
function on four-manifoldsM4 with H2(M4, C) 6= 0, or by studying the
properties and correlators of extended operators.
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[Aharony, Seiberg, Tachikawa ’13]

A prototypical example is su(2)→ {SU(2), SO(3)± = (SU(2)/Z2)±}.
[Gaiotto, Moore, Neitzke ’10]

One can distinguish the different global forms by studying the partition
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Classifying N = 4 theories

When computing the partition function of a N = 4 theory on some
closed manifoldM4 we do:

ZN=4[M4, ·] =
∑
[F ]

∫
[DA][Dλ][DΦ]e−Sg[τ,A,λ,Φ]

where [F ] denotes the homotopy class of the bundle overM4.
Which classes [F ] should we include in the sum?

There is a genuine choice to be made here.
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Classifying N = 4 theories
SU(2) vs. SO(3)

I will briefly illustrate this in the case g = su(2). There are two Lie
groups with algebra su(2): SU(2) and
SO(3) = PSU(2) = SU(2)/Z2.

Every SU(2) bundle can be interpreted as a SO(3) bundle, but in
sufficiently complicated manifolds there are SO(3) bundles that
cannot be understood as SU(2) bundles.
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Classifying N = 4 theories
SU(2) vs. SO(3)

The obstruction to understanding SO(3) bundles as SU(2) bundles
is encoded by elements w2 ∈ H2(M4;Z2), known as
Stiefel-Whitney classes. If a SO(3) bundle E has w2(E) 6= 0 then
it cannot be lifted to SU(2).

In constructing the partition function, we sum over all SO(3)
bundles, including those with w2 6= 0 (the “SO(3)” theory), or only
over those with w2 = 0 (the “SU(2)” theory):

ZSO(3)[M4, ·] =
∑

[F ]∈SO(3)

∫
[DA][Dλ][DΦ]e−Sg[τ,A,λ,Φ]

ZSU(2)[M4, ·] =
∑

[F ]∈SU(2)

∫
[DA][Dλ][DΦ]e−Sg[τ,A,λ,Φ]
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Higher form symmetries

A similar story holds for all su(N).

We can understand the choices of global form as the choice of
1-form symmetry in the theory [Kapustin, Seiberg ’14], [Gaiotto,
Kapustin, Seiberg, Willett ’14]:

The SU(N) theory has a ZN electric 1-form symmetry, counting
Wilson lines in the fundamental. Introducing a background for this
1-form symmetry means turning on w2(E).

In the SU(N)/ZN theory we gauge this electric 1-form symmetry
by summing over all backgrounds for the symmetry. A magnetic
1-form symmetry counting ’t Hooft loops emerges.
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Holography and global structure

What is the holographic interpretation of the possible variants for
the su(N) N = 4 theory in 4d?

Answered in [Witten ’98]. The key insight is that we view the possible
4-dimensional theories as states in the Hilbert space of a 5-dimensional
topological “bulk” theory, taking the radial direction as “time”. [Friedan,
Shenker ’87], [Verlinde ’88], [Moore, Seiberg ’88], [Witten ’89], . . . ,
[Witten ’98], . . . , [Belov, Moore], . . .
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Quantization of the bulk TQFT
(Following [Witten ’98])

The reduction of IIB on S5 gives an effective action

LCS =
N

2πi

∫
X5

B2 ∧ dC2 .

The equations of motion are

dB2 = dC2 = 0

and B2, C2 are canonically conjugate (B2 = C2 = 0 is disallowed!):

[Bij(x), Ckl(y)] = −2πi

N
εijklδ

4(x− y) .
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Quantization of the bulk TQFT
(Following [Witten ’98])

In order to specify the boundary conditions, in addition to specifying
the vevs of local gauge invariant operators, we need to specify

α(R) = exp

(
i

∫
R
B2

)
; β(S) = exp

(
i

∫
S
C2

)
(3)

for any R,S ⊂M4 near the boundary, X5 ≈ R×M4.

They do not commute:

α(R)β(S) = β(S)α(R) exp

(
2πi

N
R · S

)
. (4)

So a state cannot be a simultaneous eigenstate of both when
R · S 6= 0 mod N . In terms of boundary conditions, we cannot fix
Dirichlet boundary conditions for both B2 and C2 simultaneously.
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Quantization of the bulk TQFT
(Following [Witten ’98])

The different global forms for su(N) are then determined by the
different boundary values of the B2 and C2 fields. In an appropriate
duality frame:

β(R) = 1 for all R 7→ SU(N).
α(R) = 1 for all R 7→ (SU(N)/ZN )0.
α(R)β(R)k = 1 for all R 7→ (SU(N)/ZN )k.
. . .
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(Non)-generalisations
In the holographic approach we start seeing how the structure of
generalised global symmetries is associated with a TQFT in one
dimension higher, the NB2 ∧ dC2 theory. Gauging (higher form)
symmetries corresponds to choosing different boundary conditions
for this theory.

There are some limitations of the holographic approach, though:
Not every theory of interest admits a tractable large N limit.
For instance the E6 (2, 0) SCFT in d = 6 is unlikely to be
tractable in this way.
Even theories that do are subtle. For example, the case of
N = 4 with algebra so(N) has not yet been worked out.
Because of the orientifold projection the B2 and C2

supergravity fields are projected out, so reformulating Witten’s
argument verbatim seems to require some version of
differential real K-theory. I don’t know what the right
differential generalised cohomology theory is for S-folds.
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The symmetry theory
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Back to geometric engineering

Consider, as an example of a theory that cannot be understood
holographically, M-theory on C2/Γ. This gives rise to 7d SYM with
gauge algebra gΓ. The 1-form symmetry group of GΓ (the simply
connected form) is its centre:

Γ ⊂ SU(2) gΓ GΓ Z(GΓ)

ZN su(N) SU(N) ZN
Binary dihedral Dic(2k−2) so(4k) Spin(4k) Z2 ⊕ Z2

Binary dihedral Dic(2k−1) so(4k + 2) Spin(4k + 2) Z4

Binary tetrahedral 2T e6 E6 Z3

Binary octahedral 2O e7 E7 Z2

Binary icosahedral 2I e8 E8 1

Other global forms are possible, for instance SU(N)/ZN , which
has a magnetic 4-form symmetry.



Introduction Anomalies Higher form symmetries The symmetry theory QG Conclusions

Where is the data for the global form?
The form of the singularity does not fully fix the global form of the
gauge group, only the algebra. Either:

There is a preferred global form of the gauge group
(alternatively, a preferred set of higher form symmetries).

Or there is some extra data that we need to specify when
constructing the string theory model.

In [IGE, Heidenreich, Regalado ’19] we argued1 that (like in holography)
it is the second option that is realised: the choice of global form for the
gauge group is encoded in a choice of boundary conditions (at infinity)
for the supergravity fields, and all possible global forms can be obtained
in this way. (Related work: [Del Zotto, Heckman, Park, Rudelius ’15],
[Morrison, Schäfer-Nameki, Willett ’20], [Albertini, Del Zotto, IGE,
Hosseini ’20], [Closset, Schäfer-Nameki, Wang ’20], [Del Zotto, IGE,
Hosseini ’20], . . . )

1The key observation is that fluxes do not commute in spaces with torsion
[Freed, Moore, Segal ’06].
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Non-commutativity of fluxes in M-theory
Let us put M-theory onM11 = N10×R. We will try to understand
the Hilbert space H(N10), or more precisely its grading by flux.
This was done in [Freed, Moore, Segal ’06].

M-theory contains 3-form gauge fields C3. The magnetic charge is
measured by the topological class of C3. To measure the electric charge,
recall that in the Hamiltonian formulation of the theory the canonical
momentum ΠC3

conjugate to C3 is ?G4. This is what we integrate to
measure the electric charge. If we express states in H(N10) in terms of
their wavefunctions ψ(C3), then a state of definite electric charge is an
eigenstate of momentum:

ψ(C3 + λ) = e
2πi

∫
N10

Qeλψ(C3)

for all flat λ. Here Qe ∈ H7(N10) is the electric charge.

So we cannot simultaneously measure electric and magnetic charges, if
there are flat topologically non-trivial λ. This is the case iff
TorH4(N10) 6= 0.



Introduction Anomalies Higher form symmetries The symmetry theory QG Conclusions

Non-commutativity of fluxes in M-theory
Let us put M-theory onM11 = N10×R. We will try to understand
the Hilbert space H(N10), or more precisely its grading by flux.
This was done in [Freed, Moore, Segal ’06].

M-theory contains 3-form gauge fields C3. The magnetic charge is
measured by the topological class of C3.

To measure the electric charge,
recall that in the Hamiltonian formulation of the theory the canonical
momentum ΠC3

conjugate to C3 is ?G4. This is what we integrate to
measure the electric charge. If we express states in H(N10) in terms of
their wavefunctions ψ(C3), then a state of definite electric charge is an
eigenstate of momentum:

ψ(C3 + λ) = e
2πi

∫
N10

Qeλψ(C3)

for all flat λ. Here Qe ∈ H7(N10) is the electric charge.

So we cannot simultaneously measure electric and magnetic charges, if
there are flat topologically non-trivial λ. This is the case iff
TorH4(N10) 6= 0.



Introduction Anomalies Higher form symmetries The symmetry theory QG Conclusions

Non-commutativity of fluxes in M-theory
Let us put M-theory onM11 = N10×R. We will try to understand
the Hilbert space H(N10), or more precisely its grading by flux.
This was done in [Freed, Moore, Segal ’06].

M-theory contains 3-form gauge fields C3. The magnetic charge is
measured by the topological class of C3. To measure the electric charge,
recall that in the Hamiltonian formulation of the theory the canonical
momentum ΠC3

conjugate to C3 is ?G4. This is what we integrate to
measure the electric charge.

If we express states in H(N10) in terms of
their wavefunctions ψ(C3), then a state of definite electric charge is an
eigenstate of momentum:

ψ(C3 + λ) = e
2πi

∫
N10

Qeλψ(C3)

for all flat λ. Here Qe ∈ H7(N10) is the electric charge.

So we cannot simultaneously measure electric and magnetic charges, if
there are flat topologically non-trivial λ. This is the case iff
TorH4(N10) 6= 0.



Introduction Anomalies Higher form symmetries The symmetry theory QG Conclusions

Non-commutativity of fluxes in M-theory
Let us put M-theory onM11 = N10×R. We will try to understand
the Hilbert space H(N10), or more precisely its grading by flux.
This was done in [Freed, Moore, Segal ’06].

M-theory contains 3-form gauge fields C3. The magnetic charge is
measured by the topological class of C3. To measure the electric charge,
recall that in the Hamiltonian formulation of the theory the canonical
momentum ΠC3

conjugate to C3 is ?G4. This is what we integrate to
measure the electric charge. If we express states in H(N10) in terms of
their wavefunctions ψ(C3), then a state of definite electric charge is an
eigenstate of momentum:

ψ(C3 + λ) = e
2πi

∫
N10

Qeλψ(C3)

for all flat λ. Here Qe ∈ H7(N10) is the electric charge.

So we cannot simultaneously measure electric and magnetic charges, if
there are flat topologically non-trivial λ. This is the case iff
TorH4(N10) 6= 0.



Introduction Anomalies Higher form symmetries The symmetry theory QG Conclusions

Non-commutativity of fluxes in M-theory
Let us put M-theory onM11 = N10×R. We will try to understand
the Hilbert space H(N10), or more precisely its grading by flux.
This was done in [Freed, Moore, Segal ’06].

M-theory contains 3-form gauge fields C3. The magnetic charge is
measured by the topological class of C3. To measure the electric charge,
recall that in the Hamiltonian formulation of the theory the canonical
momentum ΠC3

conjugate to C3 is ?G4. This is what we integrate to
measure the electric charge. If we express states in H(N10) in terms of
their wavefunctions ψ(C3), then a state of definite electric charge is an
eigenstate of momentum:

ψ(C3 + λ) = e
2πi

∫
N10

Qeλψ(C3)

for all flat λ. Here Qe ∈ H7(N10) is the electric charge.

So we cannot simultaneously measure electric and magnetic charges, if
there are flat topologically non-trivial λ. This is the case iff
TorH4(N10) 6= 0.



Introduction Anomalies Higher form symmetries The symmetry theory QG Conclusions

Non-commutativity of fluxes in M-theory

This can be restated in terms of the flux operators, as follows: for
every σ ∈ TorH6(N10;Z) = TorH4(N10;Z) there is a unitary flux
operator Φσ. Similarly for any
σ′ ∈ Tor(H3(N10;Z)) = TorH7(N10;Z).

These operators in general do not commute:

ΦσΦσ′ = e2πi L(σ,σ′)Φσ′Φσ

where L(σ, σ′) is the linking pairing on N10: choose n ∈ Z such
that nσ = ∂D. Then

L(σ, σ′) =
1

n
D · σ′ mod 1 .
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Non-commutativity of fluxes in M-theory

The pairing L(·, ·) is perfect, which implies that if
Tor(H3(N10;Z)) = Tor(H6(N10;Z)) 6= 0, then for each σ 6= 0
there is some σ′ such that L(σ, σ′) 6= 0, and thus

ΦσΦσ′ = e2πi L(σ,σ′)Φσ′Φσ 6= Φσ′Φσ .

What this all implies, it that whenever Tor(H3(N10;Z)) 6= 0 it is
not possible to simultaneously diagonalize all Φσ. In particular, it is
not consistent to take the simple “fluxless” choice Φσ = 1 for all σ.
We need to turn on some flux at infinity!
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Maximal isotropic subspaces

Despite the perhaps unfamiliar setting, the final algebraic structure
is the same as in holography: we have a Hilbert space, and a set of
non-commuting operators acting on it.

We can specify a state in the Hilbert space as usual: by choosing a
maximal subspace I ⊂ Tor(H3(N10);Z)× Tor(H6(N10);Z) such
that the corresponding group of operators {Φx} for x ∈ I is
abelian, and imposing that

Φx |0;L〉 = |0;L〉 ∀x ∈ I

In our M-theory setting, this corresponds to setting to zero on the
boundary as many fluxes as possible.

It is an easy calculation that the set of choices agrees with the
expectations from field theory ([Aharony, Seiberg, Tachikawa ’13] ) in
all cases.
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abelian, and imposing that

Φx |0;L〉 = |0;L〉 ∀x ∈ I

In our M-theory setting, this corresponds to setting to zero on the
boundary as many fluxes as possible.

It is an easy calculation that the set of choices agrees with the
expectations from field theory ([Aharony, Seiberg, Tachikawa ’13] ) in
all cases.



Introduction Anomalies Higher form symmetries The symmetry theory QG Conclusions

Maximal isotropic subspaces

Despite the perhaps unfamiliar setting, the final algebraic structure
is the same as in holography: we have a Hilbert space, and a set of
non-commuting operators acting on it.

We can specify a state in the Hilbert space as usual: by choosing a
maximal subspace I ⊂ Tor(H3(N10);Z)× Tor(H6(N10);Z) such
that the corresponding group of operators {Φx} for x ∈ I is
abelian, and imposing that

Φx |0;L〉 = |0;L〉 ∀x ∈ I

In our M-theory setting, this corresponds to setting to zero on the
boundary as many fluxes as possible.

It is an easy calculation that the set of choices agrees with the
expectations from field theory ([Aharony, Seiberg, Tachikawa ’13] ) in
all cases.



Introduction Anomalies Higher form symmetries The symmetry theory QG Conclusions

Back to M-theory on C2/Γ

We want to consider M-theory on a spaceM11 = C2/Γ×M7

with Γ a discrete subgroup of SU(2). Let us apply our methods to
classify the space of possible theories for a fixed g.

We have that C2/Γ is a cone over S3/Γ, so in order to understand
the boundary conditions at infinity we want to quantize the flux
sector of M-theory on R× S3/Γ×M7.
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Back to M-theory on C2/Γ
Γ acts freely on S3, so π1(S3/Γ) = Γ. By Hurewicz’s theorem

H1(S3/Γ) =
π1(S3/Γ)

[π1(S3/Γ), π1(S3/Γ)]
= Γab .

The group Γab is easy to determine:

Γ ⊂ SU(2) gΓ Γab

ZN AN−1 ZN
Binary dihedral Dic(2k−2) D2k Z2 ⊕ Z2

Binary dihedral Dic(2k−1) D2k+1 Z4

Binary tetrahedral 2T E6 Z3

Binary octahedral 2O E7 Z2

Binary icosahedral 2I E8 1

(Notice that Γab = Z(GΓ), with GΓ the simply connected Lie
group with algebra gΓ.)
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Back to M-theory on C2/Γ

From here
H∗(S

3/Γ) = {Z,Γab, 0,Z} .
To make my life easier I will assume thatM7 is closed and has no
torsion in homology. Then Künneth’s formula implies

Tor(H3(M7 × S3/Γ)) = H2(M7)⊗H1(S3/Γ) = H2(M7)⊗ Γab

= H2(M7; Γab) .

and similarly

Tor(H6(M7 × S3/Γ)) = H5(M7; Γab) .

Given elements σa = a⊗ `a, σb = b⊗ `b, we have the linking form

L(σa, σb) = (a · b) LS3/Γ(`a, `b) .
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Back to M-theory on C2/Γ

It is not difficult to compute the linking form on S3/Γ, we find:

Γ GΓ Γab LΓ

ZN SU(N) ZN 1
N

Dic(4N−2) Spin(8N) Z2 ⊕ Z2

(
0 1

1 0

)
Dic(4N−1) Spin(8N + 2) Z4

3
4

Dic(4N) Spin(8N + 4) Z2 ⊕ Z2

(
1 0

0 1

)
Dic(4N+1) Spin(8N + 6) Z4

1
4

2T E6 Z3
2
3

2O E7 Z2
1
2

2I E8 0 0
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Back to M-theory on C2/Γ

Classification
The possible global forms of the d = 7 theories onM7 are given by
maximal commuting subspaces of H2(M7; Γab)×H5(M7; Γab),
with commutators as above.

This result agrees with what one obtains from applying the ideas in
[Gaiotto, Moore, Neitzke ’10], [Aharony, Seiberg, Tachikawa ’13].

An alternative derivation of this result can be obtained by thinking about
screening of line operators, closely following [Aharony, Seiberg,
Tachikawa ’13]. This was done in geometric language in [Del Zotto,
Heckman, Park, Rudelius ’15], where they introduce the defect group,
which in this case is

D =
H2(C2/Γ, S3/Γ)

H2(C2/Γ)
× H2(C2/Γ, S3/Γ)

H2(C2/Γ)

It is easy to show that H2(C2/Γ, S3/Γ)/H2(C2/Γ) = H1(S3/Γ) = Γab.
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The symmetry theory
Both anomalies and the choice of symmetries/global form can be
understood in terms of a topological theory in one dimension higher.
It makes sense to consider a single object that includes both:

We cannot gauge symmetries if they are anomalous.
We cannot speak of anomalies until we have chosen the
symmetries.

A picture (suggested by D. S. Freed) makes this precise

where T̃ encodes the (relative [Freed, Teleman ’12]) theory of local
dynamics, and ρ is a gapped interface encoding the choice of global form.
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How symmetry theories appear in string theory

The derivation in [IGE, Heidenreich, Regalado ’19] uses a modified
asymptotic structure.



Introduction Anomalies Higher form symmetries The symmetry theory QG Conclusions

How symmetry theories appear in string theory

The derivation in [IGE, Heidenreich, Regalado ’19] uses a modified
asymptotic structure. This suggests a strategy for deriving the symmetry
theory associated to the field theory: dimensional reduction on the link of
the singularity:
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How symmetry theories appear in string theory
The derivation in [IGE, Heidenreich, Regalado ’19] uses a modified
asymptotic structure. This suggests a strategy for deriving the symmetry
theory associated to the field theory: dimensional reduction on the link of
the singularity:

In this picture the boundary conditions at infinity that we need to specify
in string theory correspond to ρ, so the anomaly theory itself is not visible.
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The BF theory

In the full theory on S3/Γ×X8 there are non-commuting flux
operators [Freed, Moore, Segal ’06] wrapping t× σ2 and t′ × σ5, with
t, t′ ∈ H1(S3/Γ) = Γab and σi ∈ Hi(X

8). Their commutation relations
(on a spatial sliceM7 of X8) are

Φ(t× σ2)Φ(t′ × σ5) = e2πiL(t,t
′)σ2·σ5Φ(t′ × σ5)Φ(t× σ2) .
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The BF theory (continued)

Fix Γ = ZN for concreteness. Then from the point of view of X8

we have ZN 2-surface operators and 5-surface operators whose
relative phase goes with the intersection number divided by N .
This can be represented as a

Stop = N

∫
X8

B2 ∧ dC5

topological action (as in [Witten ’98]).
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Mixed anomalies
(2112.02092, with F. Apruzzi, F. Bonetti, S. Hosseini and S. Schäfer-Nameki)

The 7d theory, in addition to the 1-form and/or 4-form symmetries
acting on Wilson lines / ’t Hooft surfaces, has a U(1)I continuous
2-form symmetry acting on instanton surfaces.

There is a mixed ’t Hooft anomaly between the U(1)I symmetry
and the 1-form symmetry, of the form

Sanomaly =

∫
X8

dC
(3)
I ∧ rg

P(B2)

2

with rgP(B2)/2 the fractional instanton number in the presence of
a background for the 1-form symmetry, and C(3)

I the background
for the instanton 1-form symmetry.

This can be derived by “reducing”
∫
M11

C3G4G4 + C3X8 on S3/Γ,
keeping track of the torsion sector. (See also recent work by [Cvetič,
Dierigl, Lin, Zhang ’21].)
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Differential cohomology
KK reductions beyond de Rham

Mathematically, we want to extract a (discrete) cohomology
invariant on d+ 1 dimensions from

∫
Link10−d(C3G4G4 + C3X8).

Tricky:
What I wrote is not well defined if there is torsion.
In the cases of interest G4 = 0, so it seems to vanish.

We can make sense of this by using differential cohomology (aka
Cheeger-Simons cohomology or Deligne cohomology), a way of
packing differential forms and cohomology classes together.
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Differential cohomology
The degree d differential cohomology group H̆d(M) fits into:

TorHp(M;Z)

Hp−1(M;R/Z) Hp(M;Z)

Hp−1(M;R)
Hp−1

Free (M;Z) H̆p(M) Hp
Free(M;Z)

Ωp−1(M)
Ωp−1

Z (M)
ΩpZ(M)

dΩp−1(M)

−β

i %I

R

dZ

τ

d

r

and enjoys a product:

H̆p(M) ? H̆q(M)→ H̆p+q(M) .
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Chern-Simons terms

The differential cohomology formulation of the M-theory
Chern-Simons term “C3 ∧G4 ∧G4” is

SCS = −1

6

∫
M11

Ğ4 ? Ğ4 ? Ğ4 .

In differential cohomology, for x̆ ∈ H̆p(Md) we have∫
Md

x̆ ∈ H̆1(pt) = R/Z .

So the integral above is not well defined by itself, but it is well
known that the whole M-theory action is. [Witten ’96]
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The differential KK reduction
OnM8 × S3/Γ we can expand

Ğ4 = γ̆4 ? 1̆ + B̆2 ? t̆2 + . . .

with t2 ∈ H2(S3/Γ) = Γab and t̆2 a flat representative of t2.

Then the reduction contains a term

Ssymm = . . .+

(
−1

2

∫
S3/Γ

t̆ ? t̆

)∫
M8

γ̆4B̆2
2 .

The term in parenthesis is the fractional instanton number for the
generator of 1-form symmetry background. It is given by the level
−1

2 spin-Chern-Simons invariant of S3/Γ evaluated on a flat
connection:

ninst = −1

2

∫
S3/Γ

t̆ ? t̆ .

This geometrizes field theory results in [Witten ’00], [Córdova, Freed,
Lam, Seiberg ’19], and is easy to generalise to compute anomalies in the
space of coupling constants for non-Lagrangian theories.
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How to compute

Extending results of [Gordon,Litherland ’78], ifMd = ∂N d+1 and x is
torsional, then we can compute∫

Md

x̆ ? y̆ ? . . .

in terms of an intersection product in N d+1. The extra factor of 1
2

requires the introduction of a quadratic refinement, which in our case
amount to choosing N d+1 to be Calabi-Yau, and dividing by 2.

By means of this formalism we can compute ninst in the previous slide
and (for example) the much more subtle anomaly theory in 5d for
SU(p)q [Gukov, Pei, Hsin ’20]

S
(5d)
anomaly =

∫
X6

dC
(1)
I ∧

p(p− 1)

2 gcd(p, q)
P(B2) +

qp(p− 1)(p− 2)

6 gcd(p, q)3
B3

2 .
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Applications

Generalised symmetries can be used to understand the dynamics of
field theory [Gaiotto, Kapustin, Komargodski, Seiberg ’17], . . . ,
[Komargodski, Ohmori, Roumpedakis, Seifnashri ’20], . . .

Developing tools to extra symmetry theories from the geometry of string
theory might allow us to analyse cases where no Lagrangian in known.

It also suggests a way to refine the SCFT classification problem:

We can also try to understand what this philosophy says about the “No
global symmetries in Quantum Gravity” expectation in the literature.



Introduction Anomalies Higher form symmetries The symmetry theory QG Conclusions

Applications

Generalised symmetries can be used to understand the dynamics of
field theory [Gaiotto, Kapustin, Komargodski, Seiberg ’17], . . . ,
[Komargodski, Ohmori, Roumpedakis, Seifnashri ’20], . . .

Developing tools to extra symmetry theories from the geometry of string
theory might allow us to analyse cases where no Lagrangian in known.

It also suggests a way to refine the SCFT classification problem:

We can also try to understand what this philosophy says about the “No
global symmetries in Quantum Gravity” expectation in the literature.



Introduction Anomalies Higher form symmetries The symmetry theory QG Conclusions

Applications

Generalised symmetries can be used to understand the dynamics of
field theory [Gaiotto, Kapustin, Komargodski, Seiberg ’17], . . . ,
[Komargodski, Ohmori, Roumpedakis, Seifnashri ’20], . . .

Developing tools to extra symmetry theories from the geometry of string
theory might allow us to analyse cases where no Lagrangian in known.

It also suggests a way to refine the SCFT classification problem:

geometry → SCFT

We can also try to understand what this philosophy says about the “No
global symmetries in Quantum Gravity” expectation in the literature.



Introduction Anomalies Higher form symmetries The symmetry theory QG Conclusions

Applications

Generalised symmetries can be used to understand the dynamics of
field theory [Gaiotto, Kapustin, Komargodski, Seiberg ’17], . . . ,
[Komargodski, Ohmori, Roumpedakis, Seifnashri ’20], . . .

Developing tools to extra symmetry theories from the geometry of string
theory might allow us to analyse cases where no Lagrangian in known.

It also suggests a way to refine the SCFT classification problem:

geometry → Symmetry theory → SCFT

We can also try to understand what this philosophy says about the “No
global symmetries in Quantum Gravity” expectation in the literature.



Introduction Anomalies Higher form symmetries The symmetry theory QG Conclusions

Applications

Generalised symmetries can be used to understand the dynamics of
field theory [Gaiotto, Kapustin, Komargodski, Seiberg ’17], . . . ,
[Komargodski, Ohmori, Roumpedakis, Seifnashri ’20], . . .

Developing tools to extra symmetry theories from the geometry of string
theory might allow us to analyse cases where no Lagrangian in known.

It also suggests a way to refine the SCFT classification problem:

geometry → Symmetry theory → SCFT

We can also try to understand what this philosophy says about the “No
global symmetries in Quantum Gravity” expectation in the literature.



Introduction Anomalies Higher form symmetries The symmetry theory QG Conclusions

“No global symmetries in QG”

From the modern viewpoint, and assuming that we can think of QG
in the same sort of language, we would have the statement that QG
does not live on the boundary of any TFT.

The (well-supported) folklore in these cases is that it is possible to
gap the theory. (For nice recent related examples in four
dimensions, see [Razamat, Tong ’20] and [Butt, Caterall, Can
Toga ’21].)

Saying that there is a gapped phase of gravity is saying that
end-of-the-world domain walls are always allowed in QG, which also
follows from the cobordism conjecture [McNamara, Vafa ’19].

Life becomes more interesting when the QG is non-susy, then we expect
bubbles of nothing to start popping up. [IGE, Montero, Sousa,
Valenzuela ’20]
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dimensions, see [Razamat, Tong ’20] and [Butt, Caterall, Can
Toga ’21].)

Saying that there is a gapped phase of gravity is saying that
end-of-the-world domain walls are always allowed in QG, which also
follows from the cobordism conjecture [McNamara, Vafa ’19].

Life becomes more interesting when the QG is non-susy, then we expect
bubbles of nothing to start popping up. [IGE, Montero, Sousa,
Valenzuela ’20]
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Conclusions

In recent years developments in condensed matter, high energy
physics and mathematics (category theory, representation theory
and algebraic topology) have started converging onto a new
understanding of what “symmetry” means:

The symmetries (and anomalies) of a d-dimensional theory
originate on a (d+ 1)-dimensional TFT, with the field theory as a

boundary state.

String theory provides a beautiful geometrisation of these
developments. In some simple examples in 7d and 5d we could
derive systematically the symmetry theory from doing dimensional
reduction of the M-theory Chern-Simons sector on the link of the
singularity. We did not need any Lagrangian information about the
theory, only the geometry!
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Future directions

We would like to have a systematic dictionary from geometry
to symmetry TFT.

We can use it to learn about field theory, but also about string
theory itself: the computations are very sensitive to details.

Gravity is the big question mark. How does it fit in the usual
Atiyah-Segal axiomatic framework? [Banerjee, Moore ’22]



Introduction Anomalies Higher form symmetries The symmetry theory QG Conclusions

Future directions

We would like to have a systematic dictionary from geometry
to symmetry TFT.

We can use it to learn about field theory, but also about string
theory itself: the computations are very sensitive to details.

Gravity is the big question mark. How does it fit in the usual
Atiyah-Segal axiomatic framework? [Banerjee, Moore ’22]


	Introduction
	Introduction

	Anomalies
	Intro
	Dai-Freed

	Higher form symmetries
	N=4
	AdS/CFT

	The symmetry theory
	The cone construction
	Flux non-commutativity
	Recap
	Deriving the anomaly theory
	Anomaly theories

	QG
	Strings

	Conclusions
	Conclusions


