
Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 0/37

Developing for SoC-based AMCs.
Jan Marjanovic (MTCA Tech Lab/DESY) 2021-12-07

10th MicroTCA Workshop, Hamburg

Presentation outline

I Hardware Introduction

I Device and Board Architecture

I Advantages of SoC-based AMCs

I Examples

I Tips and Tricks

I Conclusion

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 2/37

Hardware Introduction

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 3/37

System on a Chip, Hardware

The Zynq MPSoC [...] comprises a number of different processing elements, each optimised for partic-
ular purposes — for instance, a set of applications processors, real-time processor, and a graphics
processor, as well as Field Programmable Gate Array (FPGA) programmable logic.
from L.H. Crockett, D. Northcote, C. Ramsay: Exploring Zynq® MPSoC, 2019, https://www.zynq-mpsoc-book.com/

DAMC-FMC1Z7IO
Cost-optimized FMC carrier

(Xilinx Zynq®-7000)

DAMC-FMC2ZUP
High-performance FMC/FMC+ carrier
(Xilinx Zynq® UltraScale+™ MPSoC)

DAMC-DS812ZUP
Low-latency high-speed 8-ch digitizer
(Xilinx Zynq® UltraScale+™ MPSoC)

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 4/37

https://www.zynq-mpsoc-book.com/

Hardware

The ”standard” part:
I a large FPGA, lots of DSPs, fast transceivers
I FMC and FMC+ slot, Zone 3 Class D1.1
I backplane connections: PCIe, LLL, MLVDS, TCLK
I flexible clocking scheme with White Rabbit support

The ”computer” part:
I processors
I Ethernet (next slide)
I USB C and DisplayPort
I SATA on AMC port 2 and port 3

Example with DFMC-DSx00 on DAMC-FMC2ZUP;
the board can be interfaced either through
PCI Express or through Ethernet (Jupyter
notebooks)

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 5/37

Evolution of Ethernet handling

Backplane Ethernet (port 0) is . . .

I . . . on previous-gen boards1

connected to FPGA MGT
I Ethernet implementation in FPGA:

I with hard IP: requires high effort, not very
flexible

I with soft core: low performance, limited
capabilities, complicated integration

https://github.com/MicroTCA-Tech-Lab/damc-tck7-fpga-bsp

I . . . on SoC-based boards2 connected to
Processing System (ARM® CPU)

I Link is operational even when FPGA is
not programmed

I Leverages Linux network stack
I SSH for development
I HTTP(S), EPICS, ... for deployment

1DAMC-FMC20, DAMC-FMC25, DAMC-TCK7
2DAMC-FMC1Z7IO, DAMC-FMC2ZUP, DAMC-DS812ZUP

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 6/37

https://github.com/MicroTCA-Tech-Lab/damc-tck7-fpga-bsp

Architecture

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 7/37

Device architecture - Xilinx Zynq UltraScale+ MPSoC

Programmable
Logic (= ”FPGA”)

DDR4 memory
controller

APU (ARM®
Cortex®-A53)

RPU (ARM®
Cortex®-R5)

System Block Diagram from UG1085: Zynq
UltraScale+ Device TRM, https://www.
xilinx.com/support/documentation/user_
guides/ug1085-zynq-ultrascale-trm.pdf

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 8/37

https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf

Board architecture - DAMC-FMC2ZUP

I PCIe connected to Programmable Logic (PL)

I Ethernet connected to Processing System (PS)

I Independent memories for PL and PS

Omitted for clarity: LLL (port 8 - 11, 12 - 15), MLVDS, SATA, USB-C, White Rabbit, clocking, IPMI/management

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 9/37

FPGA project organization

Vivado project in the Board Support Package, each subsystem is handled in a separate hierarchy:

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 10/37

Software

Components of an Embedded Linux:

I First Stage BootLoader
initializes Zynq internals (PLL, PS DDR4, ...)

I bootloader (u-boot) and bootloader
commands/script
copies kernel image and Device Tree Blob (DTB) into
memory, prepares environment (e.g. MAC address
for Ethernet), optionally programs PL (FPGA)

I device tree blob
describes HW to Linux (Zynq internals, on-board
periphery)

I kernel
I root filesystem

init, coreutils, ssh server, glibc, Python, application
programs, ...

Built using Yocto from:
I ”standard” layers
I Xilinx layers
I AMC BSP layers
I application layer

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 11/37

Software, demonstration

With Bitbake (Yocto) images derived from petalinux-image-full (e.g. zup-image-demo-full)
the result is a full-blown Linux distribution:

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 12/37

Advantages of SoC-based AMCs

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 13/37

Advantages of SoC-based AMCs

I Application partitioning

I Stand-alone products

I Configuration, monitoring

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 14/37

Application partitioning

SoC-based design vs PCIe-based designs:
N data bandwidth between FPGA and CPU 1

N interrupt latency, real-time performance
H computing power

Data bandwidth

PCIe throughput on DAMC-FMC2ZUP in gen3 x4 config

1assuming PCIe gen3 x4 or x8

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 15/37

Application partitioning
Interrupt latency

I Real-time processing unit (with Arm Cortex™-R5F)
unsurprisingly performs really well

I Application Processing Unit (with Arm Cortex™-A53) in user
space provides a good compromise between latency and ease
of use

I PCIe interrupt latency higher and less deterministic
→ still OK for some applications (e.g. pulsed accelerators)

time measurement in FPGA with Custom IRQ gen

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 16/37

Application partitioning
Computing power

I On everyday tasks Cortex-A53 is approx. 10 times slower than
a dedicated CPU AMC (with Intel i7) XML parsing with Cortex-A53

XML parsing with Intel i7

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 17/37

Stand-alone product

I User software can run on the board, e.g. Web server, EPICS IOC or Jupyter notebook
I No installation needed → better out-of-box experience
I Easier deployment of FPGA images (sync between software and firmware)
I Vendor has a better control of the environment
I Advanced diagnostics tools can be ”hidden” on the board

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 18/37

Configuration

Typically a board has several on-board
components which need to be configured or
initialized at the startup according to the
application.

Old approach (non-SoC-based AMCs):
I state machines in the FPGA

I soft-core CPU (MicroBlaze, Nios II, LM32, ...)

New approach (SoC-based AMCs):
I a lot of I2C and SPI devices have Linux drivers 1

I standard GPIO (libgpio) and
I2C (i2c-tools) utilities

I Python or other high-level languages can be used

i2cdetect -r -y 0
0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: UU -- -- -- -- UU -- -- 58 -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- 6a -- -- -- -- --
70: -- -- -- -- -- 75 76 77

1press release from a couple of days ago:

https://www.analog.com/en/about-adi/news-room/press-releases/2021/11-30-2021-analog-devices-expands-linux-distribution.html

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 19/37

https://www.analog.com/en/about-adi/news-room/press-releases/2021/11-30-2021-analog-devices-expands-linux-distribution.html

Examples

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 20/37

Example design

I BSP comes with Data Acquisition example TechLab presentation on Thu at 13:30

I Two transfer paths:
I from FPGA into the PS memory (allocated with u-dma-buf)
I from FPGA into the PL memory, then with PCIe to the CPU

I libudmaio and pyudmaio used to handle the data
I Xilinx XDMA driver for PCIe (https://github.com/MicroTCA-Tech-Lab/xdma-metapackage)

$ axi_dma_demo_cpp \
--mode uio \
--pkt_pause 45000 \
--nr_pkts 1000

Counters : OK = 8192000 ,
total = 8192000

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 21/37

https://github.com/MicroTCA-Tech-Lab/xdma-metapackage

Example design

I BSP comes with Data Acquisition example TechLab presentation on Thu at 13:30

I Two transfer paths:
I from FPGA into the PS memory (allocated with u-dma-buf)
I from FPGA into the PL memory, then with PCIe to the CPU

I libudmaio and pyudmaio used to handle the data
I Xilinx XDMA driver for PCIe (https://github.com/MicroTCA-Tech-Lab/xdma-metapackage)

$ axi_dma_demo_cpp \
--mode xdma \
--dev_path \
/dev/xdma/ slot11 \
--pkt_pause 35000 \
--nr_pkts 1000

Counters : OK = 8192000 ,
total = 8192000

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 21/37

https://github.com/MicroTCA-Tech-Lab/xdma-metapackage

Standalone product
DSx00 family

I 8-channel digitizer, talks:
I Zink: ”RF Performance of Z3 class RF1.0 . . . ”, Wed 16:00
I Fenner: ”Latest Hardware Developments . . . ”, Thu 12:35

I Python library (pydsx00) provides a
high-level interface to the hardware

I Runs both on x86 64 (over PCIe, with xdma
driver) and on aarch64 (ARM)

I Easy start with Jupyter notebooks

I CLI for advanced users (long captures, . . .)

$ dsx -cli AMC \
--xdma /dev/xdma/slot4 \
plot_fft --nr_samp 1e6

$ dsx -cli AMC \
--xdma /dev/xdma/slot4 \
dump \
--nr_samp 250 e6 \
meas_data0 .npy

Written meas_data0 .npy

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 22/37

Monitoring and partitioning, example #1
DAMC-DS812ZUP - communication between the app and the RPU

I PLL and ADCs are managed by the firmware (HW
mgmt)
running on Cortex-R5 (RPU)

I Application software (pydsx00) needs to
communicate with the HW mgmt

I Solution: IPI1 Messages
I Managing other processors from Cortex-A53

(APU) - still to be implemented on DS812ZUP:
remoteproc - https://www.kernel.org/doc/Documentation/remoteproc.txt

Processor communications include both an IPI interrupt structure and memory buffers to exchange
short private 32B messages between eight IPI agents — the PMU, RPU, APU, and PL processors.
Access to the interrupt registers and message buffers is protected by the XPPU to give exclusive
access to the AXI transactions of the agents.
from UG1085, https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf

1IPI = InterProcessor Interrupt

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 23/37

https://www.kernel.org/doc/Documentation/remoteproc.txt
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf

Configuration, example #1
FMC116 with DAMC-FMC1Z7IO - PLL configuration

I Used in a LISA phasemeter prototype →
”Prof. Gerberding: Update on LISA
Phasemeter ...” at 16:00 today

I Code migrated from Virtex-6 to Zynq-7000

Before: .coe file to initialize BRAM,
state machine to program the PLL over SPI

;*****************
;** AD9517 Init **
;*****************
0107C,
01101 ,
01200 ,
01300 ,
<...>

Round-trip-time for a change:
approx. 30 minutes

After:
Use of vendor tool to generate a .stp file

CLI to program the PLL, used in init script:

$ fmc116_cli .py --ad9517 -program -stp iqdemod .stp
$ fmc116_cli .py --ad9517 -info
AD9517 part_id = 0x53
AD9517 PLL readback = 0x4f

Digital lock detect = 1
REF1 freq > threshold = 1

Round-trip-time for a change:
approx. 1 minute, easier to use

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 24/37

Monitoring, example #2
GigE Vision on ZUP

I Protocol implementation split between HW
(high-performance part) and SW (initialization,
XML parsing, link management)

I MAC addresses, S/N, production date stored in
on-board EEPROM

I SFP modules (EEPROM at 0x50 for identification,
DDI at 0x51 for monitoring)

i2cdetect -y 5
0 1 2 3 4 5 6 7 8 9 a b c d e f

<...>
50: 50 51 -- -- -- -- -- -- -- -- -- -- -- -- -- --
<...>
i2cdump -y 5 0x50 b

0 1 2 3 9 a b c d e f 0123456789 abcdef
00: 03 04 07 10 0c 00 06 67 00 00 00 ????... @.?.?g...
10: 03 01 00 00 20 20 20 20 20 20 20 ??.. FS
20: 20 20 20 20 46 50 2d 31 30 47 2d SFP -10G-
30: 54 20 20 20 <...> 20 20 20 03 52 00 28 T ?R.(
40: 00 1a 0a 58 30 30 39 31 35 33 20 .?? XG1904009153

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 25/37

Examples from our partners

D-TACQ ACQ400 RTM with DAMC-FMC1Z7IO

D-TACQ Solutions Ltd (https://www.d-tacq.com/) is using Z7IO
in combination with ACQ400-MTCA-RTM-2.

Example: EPICS IOC running on Z7IO

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 26/37

https://www.d-tacq.com/

Examples from our partners
CAEN ELS picoammeter on DAMC-FMC2ZUP

Web server (Node.js) with React front-end and EPICS IOC running on the board.

CAENels presentation on Wed at 13:40

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 27/37

Tips and Tricks

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 28/37

Cross-development

I SDK can be generated with Yocto (bitbake -c populate sdk)
I vim, nano, ed1 and git are installed on the board by default
I for more complex development, several cross-development options are available,

for example: Visual Studio Code Remote Development

https://code.visualstudio.com/docs/remote/remote-overview

1https://www.gnu.org/fun/jokes/ed-msg.en.html

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 29/37

https://code.visualstudio.com/docs/remote/remote-overview
https://www.gnu.org/fun/jokes/ed-msg.en.html

System ILA and AXI Performance Monitor

I systems are becoming increasingly complex
I good debugging tools are available, e.g. System ILA1

I System ILA can be used to observe AXI transactions
I three System ILAs are included in the example design

I ARM interface, PCIe interface, DMA operation

I AXI Performance Monitor can be used to observe
interconnects, e.g. when acquiring data:

1ILA = Integrated Logic Analyzer

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 30/37

Xilinx Virtual Cable

Xilinx Virtual Cable (XVC) is a TCP/IP-based protocol that acts like a JTAG cable and provides a means
to access and debug your FPGA or SoC design without using a physical cable.
from https://www.xilinx.com/products/intellectual-property/xvc.html

I Software-side of the XVC is included in the BSP
I two packages in meta-techlab-utils layer:

xilinx-xvc-driver and xilinx-xvc-server
I Useful links:

I https://support.xilinx.com/s/article/974879
I https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/

ug908-vivado-programming-debugging.pdf

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 31/37

https://www.xilinx.com/products/intellectual-property/xvc.html
https://support.xilinx.com/s/article/974879
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug908-vivado-programming-debugging.pdf

FPGA Manager

The Zynq UltraScale+ MPSoC Programmable Logic (PL) can be programmed either using First Stage
Boot-loader(FSBL), U-Boot or through Linux.
from https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841847/Solution+ZynqMP+PL+Programming

Load the FPGA image (and the device tree overlay) from Linux userspace
(init script from fpgautil-init.bb):

cat /etc/init.d/fpgautil -init.sh
echo "fpgautil -init: downloading FPGA image"
fpgautil -b /lib/ firmware /base/ damc_fmc2zup_top .bit.bin -o /lib/ firmware /base/base.dtbo
echo "fpgautil -init: FPGA image download done"

Un-load the FPGA image and the device tree overlay:

fpgautil -R

Get the FPGA ID code (device identifier):

fpgautil -r
Readback contents are stored in the file readback .bin
grep IDCODE readback .bin
IDCODE --> 4 a4e093

local.conf should include:

IMAGE_FEATURES += " fpga - manager "

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 32/37

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841847/Solution+ZynqMP+PL+Programming

Device Tree

I Two separate files on the board (when using FPGA manager):
I system: /mnt/sd-mmcblk0p1/damc-fmc2zup-system.dtb
I PL: /lib/firmware/base/base.dtbo

I when using our BSP (meta-techlab-utils) add DT FROM BD ENABLE = "1" to
local.conf to get the IPs from the application into the device tree

I User-generated IPs can be handled by the UIO driver
(https://www.kernel.org/doc/html/v5.4/driver-api/uio-howto.html)

I lsuio (https://www.osadl.org/UIO-Archives.uio-archives.0.html) can be used
to list all IPs present in the device tree

root@ZUP -0001:˜/ lsuio -0.2.0 # ./ lsuio
uio9: name= hier_daq_pcie_axi_bram_ctrl , version =devicetree , events =0

map [0]: addr =0 xA0220000 , size =8192
uio8: name= hier_daq_arm_axi_traffic_gen , version =devicetree , events =0

map [0]: addr =0 xA0110000 , size =65536
uio7: name= hier_daq_arm_axi_dma , version =devicetree , events =0

map [0]: addr =0 xA0122000 , size =4096
uio6: name= hier_daq_arm_axi_bram_ctrl , version =devicetree , events =0

map [0]: addr =0 xA0120000 , size =8192
uio5: name= clk_monitor_clk_monitor_0 , version =devicetree , events =0

map [0]: addr =0 xA0060000 , size =4096

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 33/37

https://www.kernel.org/doc/html/v5.4/driver-api/uio-howto.html
https://www.osadl.org/UIO-Archives.uio-archives.0.html

Package Management

I A single command required to create a repo: bitbake package-index
I Configuration file in /etc/yum.repos.d/

Serving the repository (on the build server): Updating the packages (on the board):

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 34/37

Conclusion

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 35/37

Conclusion

I Several new and interesting AMC boards were developed;
available to the community and partners for their projects

I All important features of previous-gen boards are still
present (PCIe, LLL, MLVDS, TCLK, Zone3)

I Tight integration between a CPU and FPGA →
solutions leveraging all components

I Good eco-system (driven by Xilinx);
smooth integration between different components

I The board can act as a standalone product

I Improved quality-of-life for the developers and users

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 36/37

Thank you

https://techlab.desy.de

mtca-techlab@desy.de

Deutsches Elektronen-Synchrotron DESY
A Research Centre of the Helmholtz Association
Notkestr. 85, 22607 Hamburg, Germany

Developing for SoC-based AMCs
J. Marjanovic, 2021-12-07, Page 37/37

