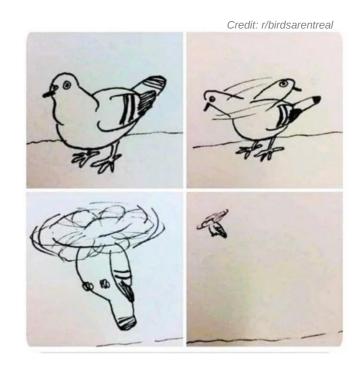
Do's and Don'ts of MicroTCA System Design.

10th MicroTCA Workshop

Cagil Gumus (CJ) Hamburg, 7 December 2021


Motivation

MicroTCA can get very simple and very complicated.

Your application requirements can change the MicroTCA system significantly.

- Many different applications using the same standard →
 - The standard is quite flexible →
 - System engineering becomes less straight forward
- For the newcomers, the task of assembling a new system from scratch can be daunting.

This tutorial will show some of the critical elements of MicroTCA systems that effect design decisions.

It works != Best solution

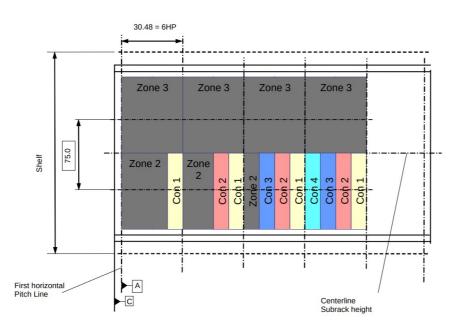
Choose the right MTCA Crate

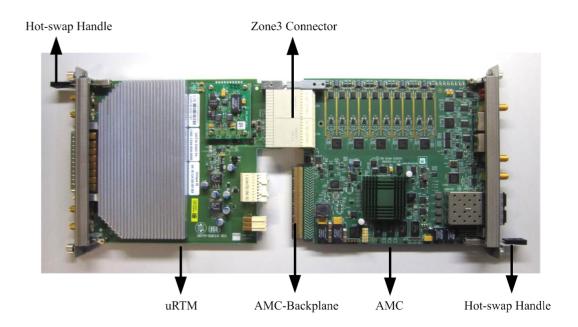
Choose the right MTCA Crate

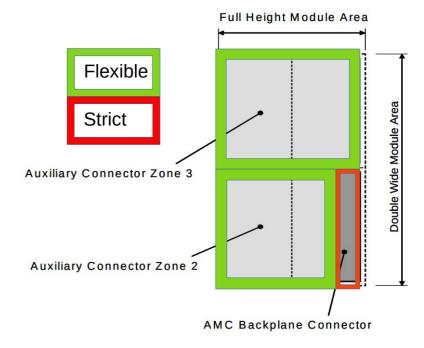
The trade off between functionality – redundancy – reliability

Questions to ask:

- How many AMC cards do you need?
- How about redundancy? (Power Module, MCH ...)
- What kind of AMC cards?
- RTM cards necessary?
- RF Backplane Necessary?
- How should be the AMC Backplane configuration?
 - Fat Pipe Configuration (PCIe, 10/40 GigE, SRIO ..)
 - Point-to-Point Links
 - SATA
 - JTAG on Backplane?

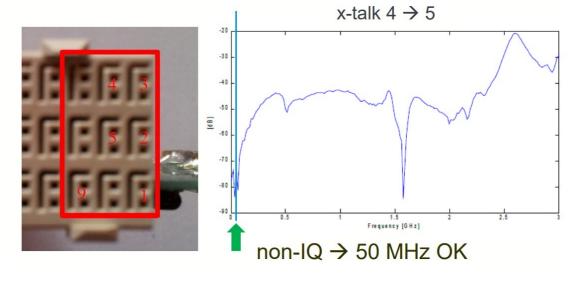



Choose the right AMC+RTM Pair


Choosing the right AMC + RTM

Importance of Zone2/3 Connectivity

- Mostly : AMC → COTS
- RTM → In-house development or COTS
- The MicroTCA.4 Standard does **not** dictates how Zone2 and Zone3 connector should be.
- There are recommondations done by companies/facilities.
- The interoperability might be an issue.

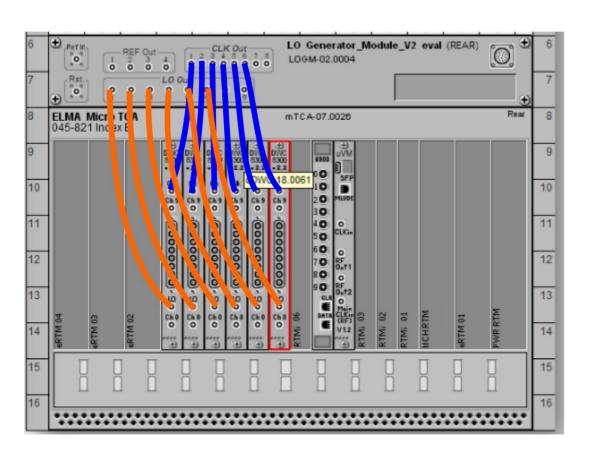


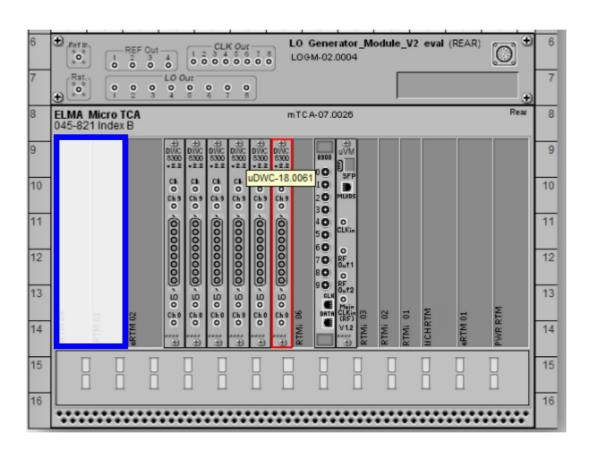
Choosing the right AMC + RTM

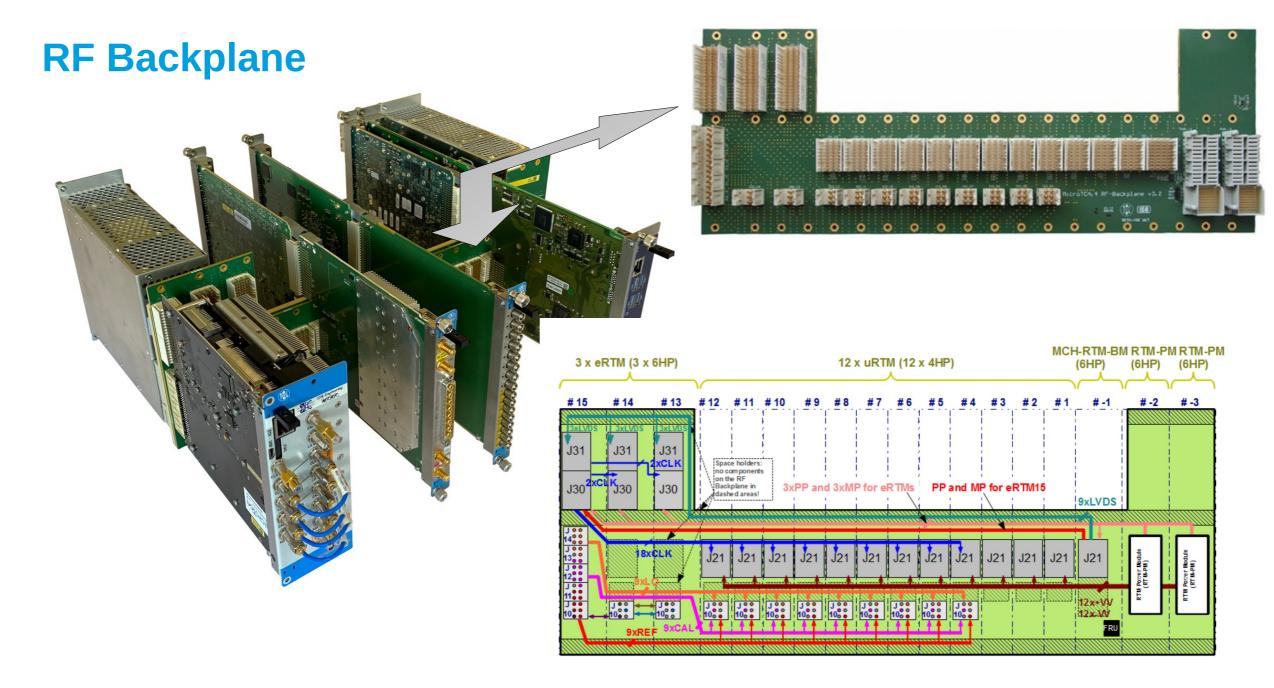
Analog signal performance of Zone3

- Critical Question: How do I transfer analog signals inside the MicroTCA environment?
 - Direct injection from front panel of AMC
 - Over Zone3
- Analog signal transfer over Zone3 can be limited in terms of maximum frequency >200MHz is problematic for LLRF applications
- Solution: New connector: COAXIPACK 2 from Radiall
 - Upto 3GHz

A new Zone 3 Class for RF Signals up to 3 GHz in MicroTCA.4 Johannes Zink, MTCA Workshop 2019






RF Backplane (MicroTCA.4.1)

Motivation: Getting rid of spaghetti, better management for analog signal distribution

Before After

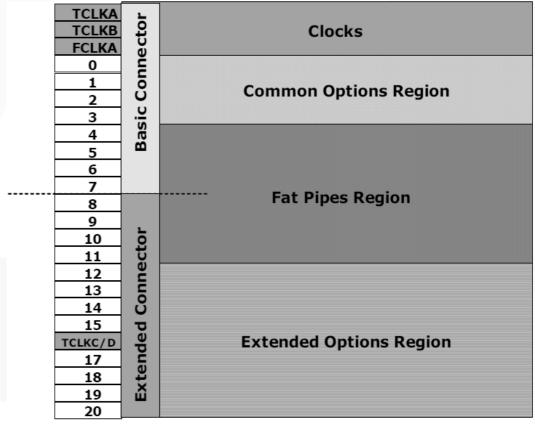
Know your AMC-Backplane

Know your AMC Backplane

Which ports to use on your application?

Protocols on the AMC backplane

• IPMI (Management)


• Gigabit Ethernet (Ports 0-1)

• SATA* (Ports 2-3)

• Fat Pipe + Extended Fat Pipe* (Ports 4-11)

- PCle
- SRIO
- 10/40 GbE
- Point-to-Point Links* (Ports 12-15)
- MVLDS* (Ports 17-20)
- Clocks* (TCLKA,TCLKB TCLKC,FCLK)
- JTAG*
- * → Changes depending on the crate/application

Pro Tip:

Don't know how your crate backplane looks like?

Backplane configuration is stored on the Carrier FRU EEPROM (FRU ID: 253)

NAT MCH: 'show_fruinfo 253'

Know your AMC Backplane

Eg: PCle

MicroTCA Crate can offer PCIe lanes in different ways:

Ports 4-7 (\times 4) \rightarrow MCH #1

Ports 8-11(x4) → MCH #2

Ports 4-11(x8) → MCH #1

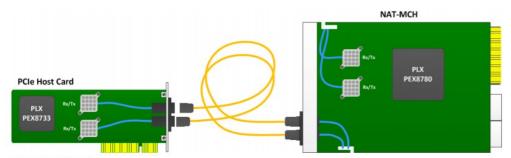
Critical Question #1:

How much bandwidth/latency does your application require?

Critical Question #2:

Does my MicroTCA crate satisfy the answer to Critical Question #1?

PCI Express link performance^{[46][47]}


	Varaion		Intro-	Line and	Transfer	Throughput ^{[i][iii]}				
	V	Version	duced	Line code	rate ^{[i][ii]}	×1	×2	×4	×8	×16
		1.0	2003	8b/10b	2.5 GT/s	0.250 GB/s	0.500 GB/s	1.000 GB/s	2.000 GB/s	4.000 GB/s
		2.0	2007	8b/10b	5.0 GT/s	0.500 GB/s	1.000 GB/s	2.000 GB/s	4.000 GB/s	8.000 GB/s
N		3.0	2010	128b/130b	8.0 GT/s	0.985 GB/s	1.969 GB/s	3.938 GB/s	7.877 GB/s	15.754 GB/s
		4.0	2017	128b/130b	16.0 GT/s	1.969 GB/s	3.938 GB/s	7.877 GB/s	15.754 GB/s	31.508 GB/s
e		5.0	2019	128b/130b	32.0 GT/s	3.938 GB/s	7.877 GB/s	15.754 GB/s	31.508 GB/s	63.015 GB/s
	6.0	(planned)	2021	128b/130b + PAM-4 + ECC	64.0 GT/s	7.877 GB/s	15.754 GB/s	31.508 GB/s	63.015 GB/s	126.031 GB/s

Now

Future

PCIe Root Complex outside of the crate

Suffering from weak CPU-AMC? Here is your solution

Needed Parts:

- 4 x Finisar BOA
- 4 x Pig Tail
- 4 x Face Plate Adapter
- 2 x Patch Cord 5m
- Resulting Costs for a PCIe

GenIII x16 Uplink Connection:

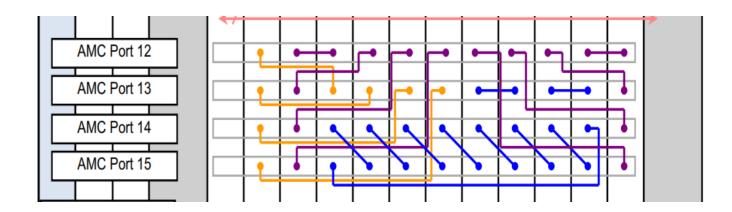
Effects MCH selection!

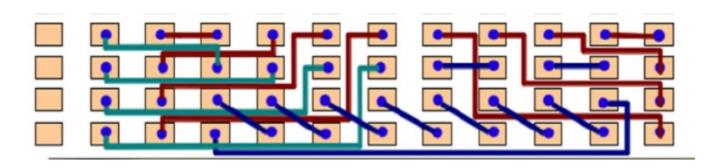
Pros:

- Cheaper & Poweful PC outside of 80W limitation
- Many choices in the industry for parts
- Many more PCIe slots available on the motherboard for more cards

Cons:

- CPU is not managed by MCH
- Boot sequence of crate and PC has to be done properly


Know your AMC Backplane


Point to Point Links

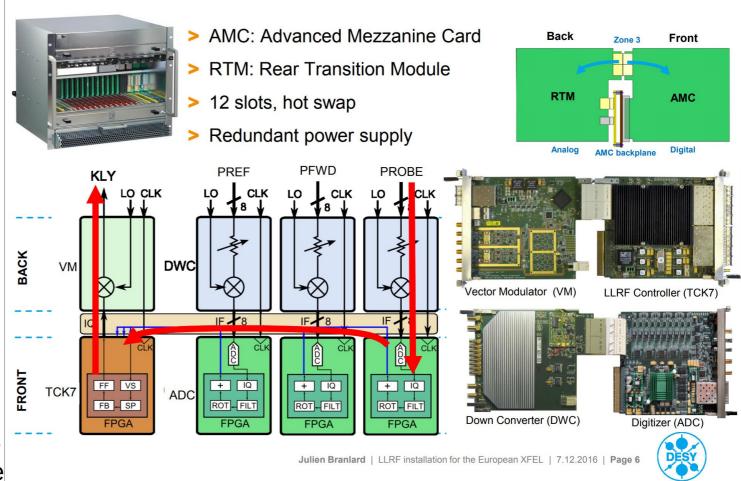
Point to Point links offer direct communication from FPGA to FPGA.

Used for data aggregation / fast feedback between boards

These lines are 'hard wired'. Double check the connectivity before ordering.

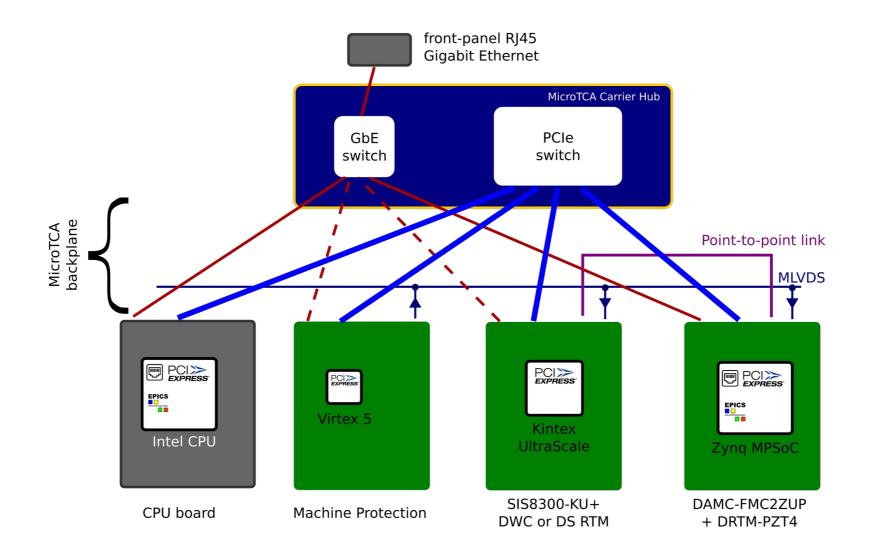
Know your AMC Backplane

Examples of P2P Links

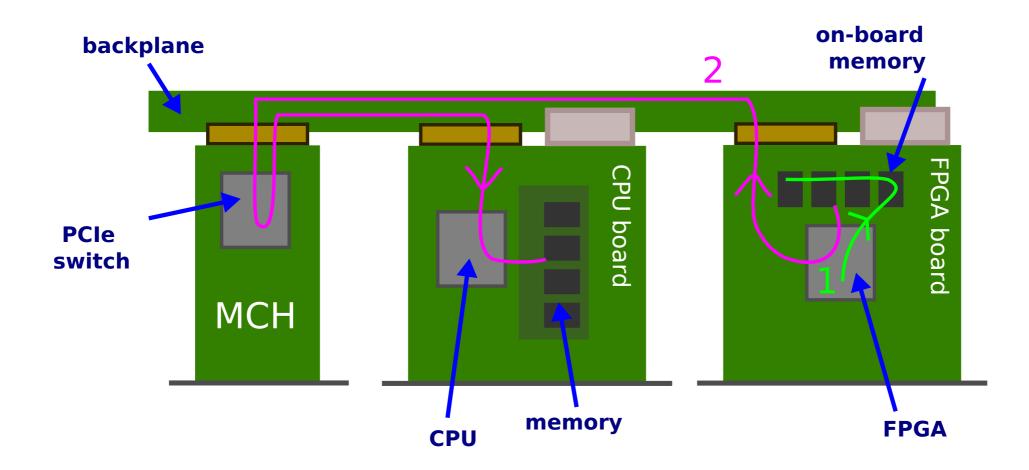

Use Case Example:

Data aggregation on point-to-point links on Europan-XFEL LLRF Crates:

Probe + Forward + Reflected signals of 16 cavities gets send to main controller board.


Some numbers:
6.25Gbps link rate
Sending 11x32 bits payload packet
End to End latency: ~344ns

Higher data rates with fully occupied crates harder to achieve because of big EMI issue



Visulize how the data moves inside the MTCA Crate

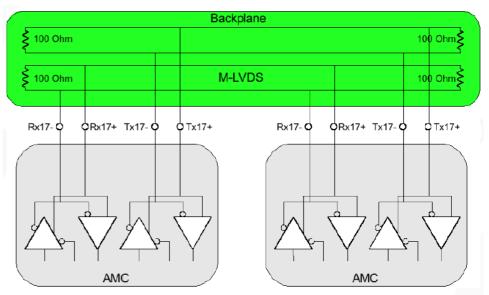
Document the Data Transfer inside Crate

Document the Data Transfer inside Crate

Know your clocking options

MLVDS

- Multipoint LVDS is used in MicroTCA for communication between cards.
- Ports 17-20 Can be used to forward clocks, triggers and interlocks to all other cards on the crate.
- Mesh Topology
 - One AMC acts as a driver
 - other cards can be configured as receivers.
- Wired OR is also possible in MLVDS
 - more than one card can drive the same line (with the same polarity)



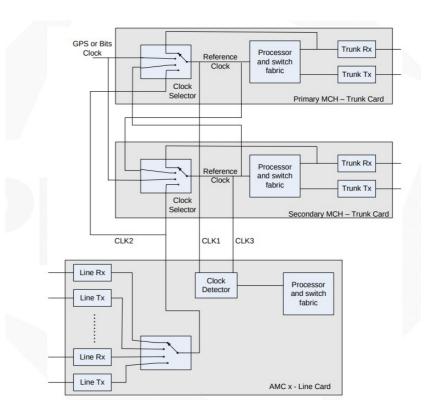
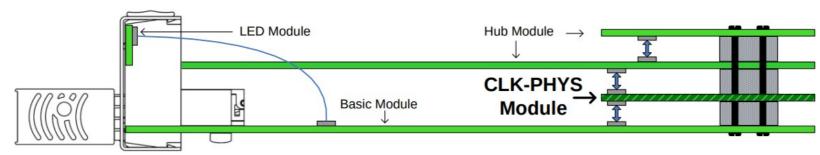

Figure 6-4: M-LVDS transceiver shown for port 17

Table 6-1: Example usage of the 8 bus lines for triggers, interlocks and clocks


AMC Port	Name	Description	Usage	
Rx17	TrigStart	Start sampling data		
Tx17	TrigEnd Stop sampling data		Triggers	
Rx18	TrigReadOut	Start data transfer to CPU		
Tx18	ClkAux	Low performance clock		
Rx19	Reset	Reset of counter, dividers		
Tx19	Interlock 0	Interlock line 0	3 interlocks to	
Rx20	Interlock 1	Interlock line 1	provide 2 out of 3	
Tx20	Interlock 2	Interlock line 2	redundancy	

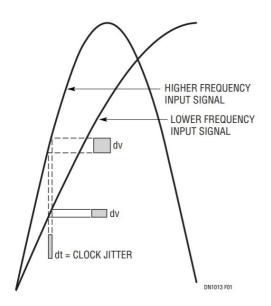
Clock Distribution inside MicroTCA

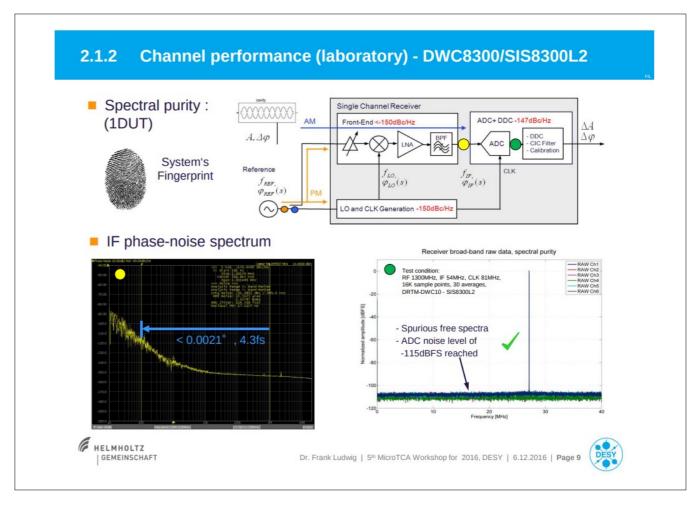
- MCH can be used to distribute clocks inside the MicroTCA crate
- TCLKA/B/C/D and FCLK can be generated
- Specially useful for synchronizing multiple AMCs

PICMG AMC.0 Specification

NAT-MCH CLK-PHYS-Module – Technical Reference Manual

Clocking Options for an AMC

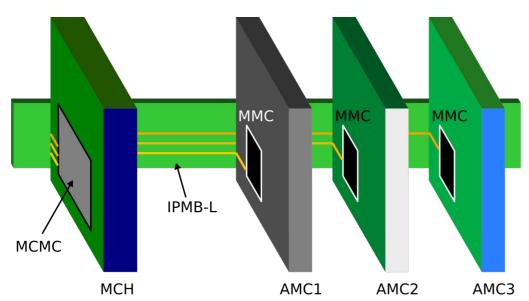

Case in point: SIS8300-L2 from Struck GmbH

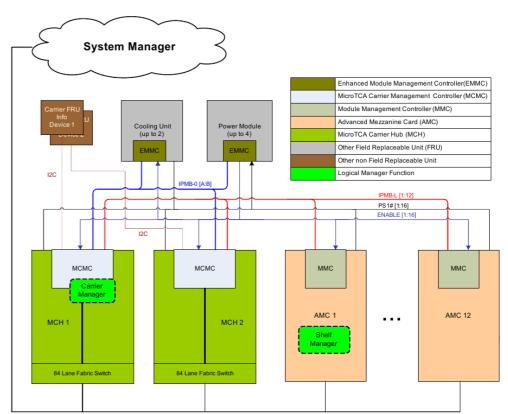


Clock Jitter effects on ADCs

For digitizers with high input frequencies, jitter of the ADC clock becomes important.

The amount of clock jitter will set the maximum SNR that you can achieve for a given input frequency


Dr. Frank Ludwig | 5th MicroTCA Workshop | High Performance Measurement Applications in MicroTCA.4


Linear Technology | Understanding the Effect of Clock Jitter on High Speed ADCs Design Note 1013

Learn how to use IPMI

What is IPMI?

- MicroTCA Standard uses: IPMI (Intelligent Platform Management Interface) for management.
- Specification is led by Intel. Widely used in computer system vendors.
- I2C based protocol that is message-based interface

Internet Protocol Capable Transpor

Use Open Source tools for IPMI

- 3 main projects for open-source tool (Windows/Linux) for controlling IPMI-enabled systems:
 - ipmitool
 - OpenIPMI
 - FreeIPMI
- By-pass MCH and gain full control of the crate
- Abstraction layer between System Manager and System

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ISBN: 978-3-95450-209-7 ISSN: 2226-0358

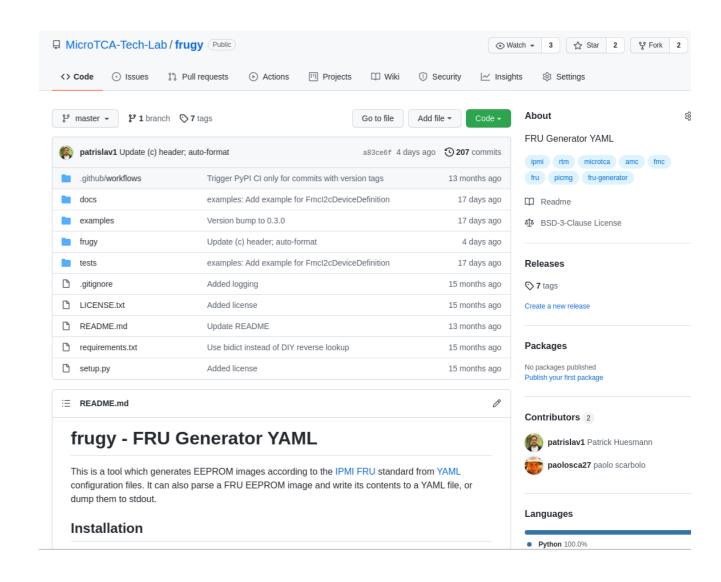
ICALEPCS2019, New York, NY, USA JACOW Publishing doi:10.18429/JACOW-ICALEPCS2019-WEBPP02

CENTRALIZED SYSTEM MANAGEMENT OF IPMI ENABLED PLATFORMS USING EPICS*

K. Vodopivec[†], Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract

The Intelligent Platform Management Interface (IPMI) is a specification for computer hardware platform management and monitoring. The interface includes features for monitoring hardware sensors, such as fan rotational speed and component temperature, inventory discovery, event propagation, and logging. Additional features are available in PICMG compliant systems, including ATCA and Micro TCA. With IPMI support implemented in the hardware, all IPMI functionality is accessible without any host operating system involvement. In fact, IPMI can even be used to control remote host power management. With its wide breadth of support to the position.


decision is also the availability of built-in native support for the IPMI standard, as this automatically furnishes the application with system health monitoring. Functionality that had previously been implemented on a case by case basis, and was often overlooked, is now part of every system and therefore can be used for more thorough monitoring and control of core system functions.

The IPMI standard provides interfaces to monitor embedded sensors such as temperature, voltage, current, fan speed and others, depending on the particular component implementation. Monitoring core sensors alone provides useful benefits for detecting component failures or potentially trying to prevent them. For example, a failed fan inside the

Edit FRU with frugy

- frugy is a open-souce tool from MicroTCA-Technology Lab.
- Generated EEPROM images according to the IPMI FRU Standard from YAML configuration files.
- Especially useful for people developing a custom AMC board.
- Can be used to 'edit' existing FRUs
 - eg. lowering required current for specific AMC on a heavily occupied MTCA crate
 - Edit Inventory information with custom
 ID for your own company

IPMI Security

- In today's standards IPMI can be considered 'not secure enough'
- Several vulnarabilities:
 - **Insecure input validation**
 - **Bad Privilage Checking**
 - **Shell Injection Vulnerabilities**
 - **Buffer Overflow Vulnerabilities**
- Things to do:
 - Keep IPMI firmware upto date (Even though it is EOL)
 - Change default passwords
 - **NEVER** configure IPMI devices on public IP addresses.
 - Isolate them on a physically separated network.

COMPUTERWORLD UNITED STATES -

IPMI: The most dangerous protocol you've never heard of

IPMI could be punching holes in your corporate defenses.

You spend thousands or even hundreds of thousands of dollars to secure the data stored on the critical databases and application servers your organization relies on. But what if each of those systems secretly harbored a powerful, hardware based back door that would give a remote attacker total control of the system? And what if that backdoor wasn't planted by some shadowy hacker group operating out of the former Soviet republics but by the multi-billion dollar Western company that sold you the server

Illuminating the Security Issues Surrounding Lights-Out Server Management

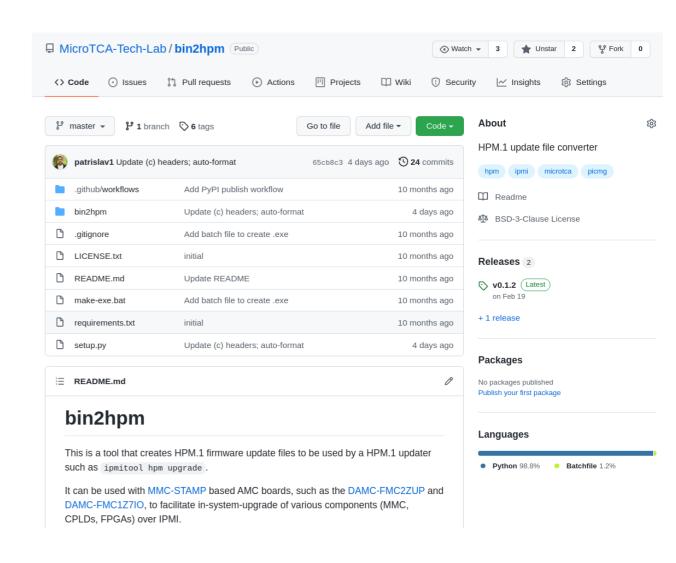
Anthony J. Bonkoski University of Michigan abonkosk@umich.edu

Russ Bielawski University of Michigan ibielaws@umich.edu

J. Alex Halderman University of Michigan jhalderm@umich.edu

Abstract

Out-of-band, lights-out management has become a standard feature on many servers, but while this technology can be a boon for system administrators, it also presents a new and interesting vector for attack. This paper examines the security implications of the Intelligent Platform Management Interface (IPMI), which is implemented on server motherboards using an embedded Baseboard Management Controller (BMC). We consider the threats posed by an incorrectly implemented IPMI and present evidence that IPMI vulnerabilities may be widespread. We analyze a major OEM's IPMI implementation and discover that it is riddled with textbook vulnerabilities, some of which would allow a remote attacker to gain root access to the


troller that is integrated into the system's motherboard or installed via a daughter card. The BMC has its own flash storage and runs its own operating system, separate from the host's. It typically has access to the PCI bus, to the on-board NIC via a "side-band" interface, and to a collection of sensors and I/O ports [24]. Consistent with its purpose, the BMC has almost total control of the server.

IPMI can be a convenient administrative tool, but, un der the control of attackers, it can also serve as a powerful backdoor. Attackers who take control of the BMC can use it to attack the host system and network in a variety of ways. For example, they could install BMC-resident spyware to capture administrative passwords when the operator remotely accesses the host. They could use the

Exploit all Firmware Upgrade Options

Firmware Upgrade of AMCs

- Use PCIe/Ethernet to send the bit file to FPGA and trigger reconfiguration. (Xilinx: ICAP)
 - Fast! (~ seconds)
 - If you lose PCIe/Ethernet this method is useless.
- Use HPM (Hardware Platform Management)
 - Created by PICMG
 - Uses IPMI bus to send the firmware data
 - Extremely slow (Ultrascale ~ 1 hr)
 - Can update MMC firmware
- Use JTAG
 - From AMC backplane
 - From JTAG Connector on the PCB

Use MSK-DESY FPGA Framework:

FWK

Update on DESY-MSK FPGA Framework (FWK)

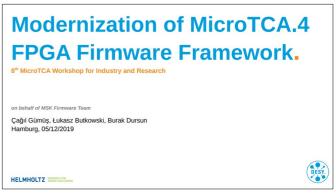
Promises: (Almost) Delivered!

8th MicroTCA Workshop: "We need to modernize our FPGA Firmware Framework"

Version Control switch to git: Done

Complete overhaul of tcl framework: Done

Get rid of properity buses:
 80% Complete


IP-Core mentallity:

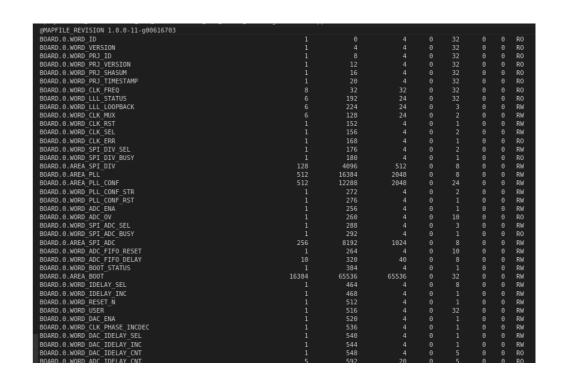
Switch to Documentation as Code: Done

Promised to open code to public: January 2022

- Lessons learned: Licence issues are not fun.
 - Settled on:
 - CERN Open Hardware Licence v.2.0 (weak)
 - Apache 2.0

2 years ago...

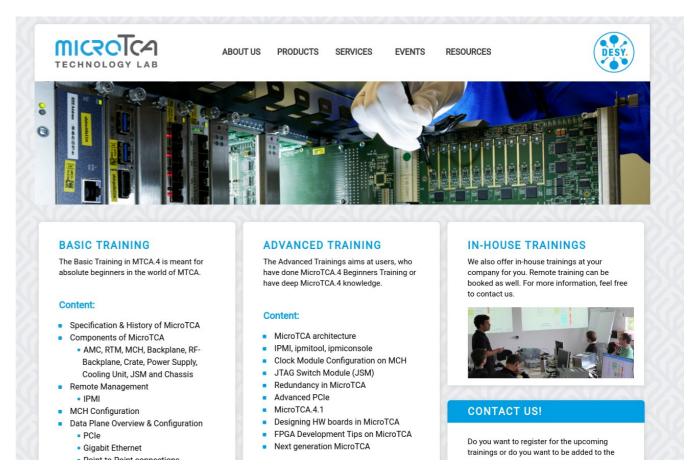
- Free BSPs: SIS8300-KU, DAMC-TCK7, DAMC-FMC2ZUP, DAMC-Z7IO
- Free Libraries: Many I2C, SPI, ADC, DAC components used in MTCA enviorements, useful math functions etc.
- Free Jenkins Pipeline libraries
- ...


Code will be published on: gitlab.desy.de/public

ChimeraTK + FWK

- Standardized interface definition between FPGA and software: map files
 - Abstraction between register/interrupt addresses and software logic
 - Memory address
 - ReadWrite/ReadOnly
 - Signed/Unsigned
- Automatic generation from the FPGA project by FWK
- Tutorial by Martin Killenberg on ChimeraTK

Break			
Virtual Workshop via Zoom			13:10 - 13:20
Developing for SoC-based AMCs	Jan Marjanovic	ChimeraTK	Martin Killenberg
Virtual Workshop via Zoom	13:20 - 13:55		
PCIe and Open Source Linux Driver	Ludwig Petrosyan		
Virtual Workshop via Zoom	13:55 - 14:30	Virtual Workshop via Zoom	13:20 - 14:30
Decel Decelfort II work / Discour			



Do you want to learn more?

Let us show you how deep the rabbit hole goes

- Go to techlab.desy.de to learn more about the training
- 2 Trainings:
 - Basic
 - Advanced
- Dates for 2022 will be announced soon!
- Training can be held virtually/in-house depending on the health guidance.

Thank you

Contact

DESY. Deutsches

Elektronen-Synchrotron

www.desy.de

Çağıl Gümüş (CJ)

FPGA Team MSK DESY

cagil.gumues@desy.de

+49408998 3760