PCle Gen4/5 and 100G-Ethernet on mTCA platform

nVent/Schroff GmbH
Sergej Dizel,
Principal Engineer Backplanes \& Signal Integrity

mTCA applications / mTCA-NG working group motivation

Medicine

Defence

Physics

SI goal of the PICMG mTCA-NG working group:
implementation of the latest bus generations PCle Gen4/5 and 100Gbps ethernet

mTCA, new connectors

SI improved connectors from Yamaichi and Amphenol (backplane and MCH-plug tongue 2)

AMC-card second tongue (more power and wider data planes for AMC)

New HUB connector, ExaMAX from Amphenol and Samtec PCle Gen4/5 and 100Gbps Ethernet capable with 4 connectors up to 192 pin pairs on MCH realizable (current MCH has <170 pairs) new, x-talk optimized signal assignment ($\mathrm{Rx} / \mathrm{Tx}$ allocation)
 MCH-card pn: not finally decided (e.g. Samtec EBTF-6-08-2.0-S-RA-1 or Amphenol 10131762-101LF) Backplane pn: not finally decided (e.g. Samtec EBTM-6-08-2.0-S-VT-1 or Amphenol 10124752-101LF)

mTCA transmission channel (PCle or Ethernet)

mTCA, 3D-model parameters

Min and max trace length:
AMC/MCH card

min trace length: 25 mm (1 inch) max trace length: 127 mm (5 inch)

min trace length: 50 mm (2 inch) max trace length: 250 mm (9.8 inch)

PCB material:

For all cards: Isola Tachyon100G (typ. Dk 3.02 Df 0.0021 @10GHz)
For backplane: Elite Material EM-891K (typ. Dk 3.1 Df 0.0024 @10GHz)

Diff pair impedance:
For PCle and Ethernet busses: 90Ω

mTCA, 3D-model parameters

Channel segment parameter were defined in the group and base on realistic dimensions and routing strategies for $\mathrm{AMC} / \mathrm{MCH}$-cards and mTCA-backplanes:

- PCB stack-ups
- Routing layers
- differential trace dimensions
- BGA and connector fanouts
- Signal assignment/pinout
- Via, pad, anti-pad, backdrill
geometries
- allocation of x-talk aggressors
- ...

3D Models (simulated with CST and HFSS software):

mTCA, 3D-model parameters

Numbers of x-talk aggressors in the connector determines the 3D-model size
highest x-talk in the channel is caused by the connectors.

3D Models (simulated with CST and HFSS software):

[^0]
mTCA channel composition

AMC A card			AMC connector Tongue 1	Backplane			AMC connector Tongue 1	AMC B card		
BGA fanout (start point)	AMC trace	Decoupling caps		BPL fanout	$\begin{aligned} & \text { BPL } \\ & \text { Trace } \end{aligned}$	$\begin{aligned} & \text { BPL } \\ & \text { fanout } \end{aligned}$		Decoupling caps	AMC trace	BGA Fanout (end point)
			$=\frac{1 i n i t i}{}$				$=11 i n i$			

mTCA, simulation cases

Interconnection groups with existing connectors:

1. AMC_T1 to AMC_T1
2. AMC_T1 to AMC_T2 (AMC_T1 to $\mathrm{MCH}_{-} \mathrm{T} 4$)
3. AMC_T2 to AMC_T2 ($\mathrm{MCH}_{-} \mathrm{T} 4$ to $\mathrm{MCH}_{-} \mathrm{T} 4$)

Interconnection groups with ExaMAX connector:
4. AMC_T1 to HUB
5. AMC_T2 to HUB

mTCA, simulation cases

Corner cases (channels with the most critical parameters)
min trace length -> maximal Re-Reflections
max trace length -> worst case ICR (Insertion loss to Cross talk Ratio)
Cases for AMC_T1 to AMC_T1 interconnection group:

Case	card A (trace length / impedance)	Tongue 1 connector	BPL (trace length / impedance)	Tongue 1 connector	card B (trace length / impedance)
AMC_T1_AMC_T1_Case 1	$25 \mathrm{~mm} / 90 \Omega$	Yamaichi	$50 \mathrm{~mm} / 90 \Omega$	Yamaichi	$25 \mathrm{~mm} / 90 \Omega$
AMC_T1_AMC_T1_Case 2	$25 \mathrm{~mm} / 90 \Omega$	Yamaichi	$50 \mathrm{~mm} / 90 \Omega$	Yamaichi	$127 \mathrm{~mm} / 90 \Omega$
AMC_T1_AMC_T1_Case 3	$25 \mathrm{~mm} / 90 \Omega$	Yamaichi	$250 \mathrm{~mm} / 90 \Omega$	Yamaichi	$25 \mathrm{~mm} / 90 \Omega$
AMC_T1_AMC_T1_Case 4	$25 \mathrm{~mm} / 90 \Omega$	Yamaichi	$250 \mathrm{~mm} / 90 \Omega$	Yamaichi	$127 \mathrm{~mm} / 90 \Omega$
AMC_T1_AMC_T1_Case 5	$127 \mathrm{~mm} / 90 \Omega$	Yamaichi	$50 \mathrm{~mm} / 90 \Omega$	Yamaichi	$25 \mathrm{~mm} / 90 \Omega$
AMC_T1_AMC_T1_Case 6	$127 \mathrm{~mm} / 90 \Omega$	Yamaichi	$50 \mathrm{~mm} / 90 \Omega$	Yamaichi	$127 \mathrm{~mm} / 90 \Omega$
AMC_T1_AMC_T1_Case 7	$127 \mathrm{~mm} / 90 \Omega$	Yamaichi	$250 \mathrm{~mm} / 90 \Omega$	Yamaichi	$25 \mathrm{~mm} / 90 \Omega$
AMC_T1_AMC_T1_Case 8	$127 \mathrm{~mm} / 90 \Omega$	Yamaichi	$250 \mathrm{~mm} / 90 \Omega$	Yamaichi	$127 \mathrm{~mm} / 90 \Omega$

In total 88 channel cases for all 5 interconnection groups (AMC connector vendors: Yamaichi and Amphenol)

mTCA, channel verification

In all 88 channel cases it was checked whether their parameter were complied with specification requirements:

For PCle Gen4/5, the Seasim tool from PCI-SIG was used (seasim-release_1.08) (transceiver reference packages from PCI-SIG were used for eye simulation)

For 100GBASE-KR4, MATLAB tool from IEEE was used (ran_com_3bj_3bm_01_1114)

[^1]Channel Operating Margin (COM) @ DERO=1e--05, Case 2 [dB]: 8.17

mTCA, simulation results

Trace length were updated:

```
AMC/MCH card:
min trace length: 25mm 35mm
max trace length: 127mm
```

Backplane:
min trace length: 50 mm 60mm (100mm for HUB channels)
max trace length: 250mm

All 88 channel cases fulfils PCle Gen4/5 and 100GBASE-KR4 requirements

- Worst case PCle Gen4/5 eye opening: $\geq 20.7 \mathrm{mV} / \geq 0.301 \mathrm{UI}$ (Pass criteria: $15 \mathrm{mV} / 0.3 \mathrm{UI}$)
- Worst case 100GBASE-KR4 COM Value: $\geq 3.47 \mathrm{~dB}$ (Pass criteria: 3dB)

Conclusion:

- PCle Gen4/5 and 100GBASE-KR4, are realizable on mTCA platform
- 100% backward compatibility can be insured with the improved AMC connectors from Yamaichi and Amphenol
- All Channels with the ExaMAX connector meet the requirements

Evaluation concept
 (compliance testing)

mTCA, evaluation

current situation:

- SI-parameter/limits and test procedures for AMC/MCH cards and mTCA backplane are defined for 10/40Gbps Ethernet only (MTCA.0 R2.0 Annex B)
- For PCle Gen3 no limits and test procedures are defined -> interoperability problems
=> the goal is to insure the interoperability between different card and backplane vendors

mTCA, evaluation

test adapters for measurements

- test cards replicates worst case cards (with longest and shortest traces)
- test backplane replicates worst case backplanes (with longest and shortest traces)
test cards
(with parameters of AMC/MCH cards with min and max trace length)

test backplanes
(with parameters of backplanes with

mTCA, evaluation

100GBASE-KR4 evaluation:

- same approach as defined in PICMG ATCA specification (PICMG 3.1 R3.0)
- measurement of DUT parameters in frequency domain in combination with worst case paddle cards and test backplanes
- calculation of COM value (Channel Operating Margin), shall be $>3 \mathrm{~dB}$

mTCA, evaluation

PCle Gen4/5 evaluation:

- Approach as defined in PCle specification
- For cards:
measurement of eye opening in combination with worst case paddle cards and test backplanes
- For backplane (TBD):

Option 1: measurement of eye opening in combination with worst case paddle cards by using BER + Oscilloscope

Option 2: measurement of DUT parameters in frequency domain and calculation of the eye opening (e.g. in Seasim)

Thank you

[^0]: Description and S-parameter of all 3D-models can be downloaded from PICMG mTCA-NG working group area

[^1]: Transmitter and Receiver equalizer settings, Case 2
 FFE taps:
 CTLR gain:
 DFE taps [1.7] 0 dB
 DFE taps $[8 \cdot 14] \cdot[0.0161,0.1007,0.0560,0.0254,0.0183,0.0224,0.0153]$

