



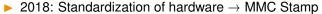

One of most important features of MicroTCA is out-of-band management interface.



MicroTCA Carrier Management Controller (MCMC) (part of MicroTCA Carrier Hub - MCH) connects to Module Management Controller (MMC) on Advanced Mezzanine Card (AMC)) over IPMB-L

from: MMC Stamp and its applications, J. Marjanovic, MTCA Workshop China 2019




## **DESY MMC codebase history**

- 2014: Legacy MMC
  - Original code based on a version from DESY MCS department
  - Many contributions, e.g. from NCBJ, DMCS@TUL
  - MMC components scattered across AMC board
  - MMC-related HW not standardized



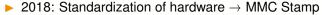


- 2014: Legacy MMC
  - Original code based on a version from DESY MCS department
  - ▶ Many contributions, e.g. from NCBJ, DMCS@TUL
  - MMC components scattered across AMC board
  - MMC-related HW not standardized



- Unified hardware platform (SoM, same HW across all AMC boards)
- All management-related components on a single high-density board
- Upgraded MCU to ARM Cortex-M4 (much more powerful than AVR)










## **DESY MMC codebase history**

- 2014: Legacy MMC
  - Original code based on a version from DESY MCS department
  - Many contributions, e.g. from NCBJ, DMCS@TUL
  - MMC components scattered across AMC board
  - MMC-related HW not standardized

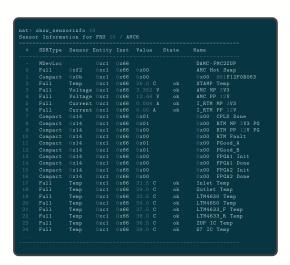


- Unified hardware platform (SoM, same HW across all AMC boards)
- All management-related components on a single high-density board
- ▶ Upgraded MCU to ARM Cortex-M4 (much more powerful than AVR)
- ▶ 2020: Standardization of software → MMC Stamp SDK
  - Existing codebase converted into shared MMC library
  - APIs created for board implementation
  - Added support for binary distribution of core library





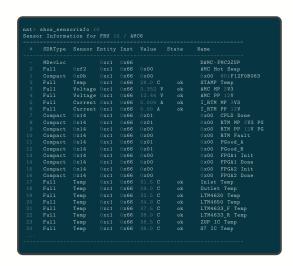





## MMC tasks & scope

- IPMI control, Hotplug events
- FRU information (AMC, RTM, FMCs)

## MMC tasks & scope


- IPMI control, Hotplug events
- FRU information (AMC, RTM, FMCs)
- Sensors, thresholds & alerts
  - temperatures
  - voltages
  - currents
  - pin levels . . .





## MMC tasks & scope

- IPMI control, Hotplug events
- ▶ FRU information (AMC, RTM, FMCs)
- Sensors, thresholds & alerts
  - temperatures
  - voltages
  - currents
  - pin levels . . .
- Payload management
  - Power management, start/stop payload
  - Custom CLI commands
  - Custom IPMI commands
  - Firmware update of payload (HPM)



see also: http://www.rehlich.com/MicroTCA\_IPMI\_management



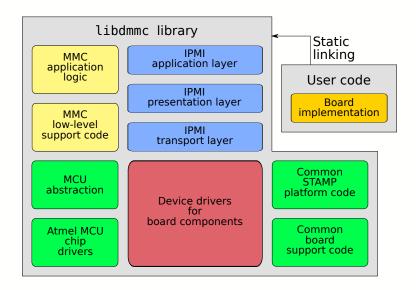
## Legacy MMC codebase structure

MMC application logic IPMI application layer

Board 3 implementation

MMC low-level support code IPMI presentation layer

Board 2 implementation


IPMI transport layer Board 1 implementation

MCU abstraction

Atmel MCU chip drivers Device drivers for board components Common STAMP platform code

Common board support code

## Separation into library and user application



### **MMC STAMP features**

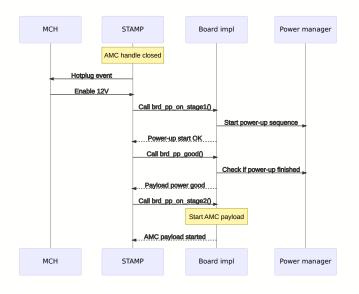
Features supported by **standard** MMC STAMP firmware out of the box:

- MCH comm, LEDs, power, RTM control
- On-board STAMP sensors
- Custom FRU read/write (AMC/RTM)

### **MMC STAMP features**

### Features supported by **standard** MMC STAMP firmware out of the box:

- MCH comm, LEDs, power, RTM control
- On-board STAMP sensors
- Custom FRU read/write (AMC/RTM)

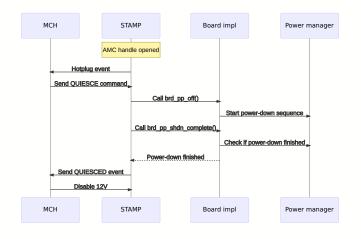

### Features requiring a board-specific firmware using MMC STAMP SDK:

- Additional sensors on user board
- MAC address forwarding to user FPGA
- Payload power sequencing
- User-specific GPIO control (MCU, CPLD)
- In-application update of payload via HPM.1
- Custom CLI commands
- Custom IPMI commands



# **MMC SDK: Power management**

## MMC SDK: Payload power up




### Board implementation:

- brd\_pp\_on\_stage1()
  Start power-up sequence
- brd\_pp\_good()Check if power-up sequence finished
- brd\_pp\_on\_stage2()
  Start the board payload
- brd\_set\_z3\_drv\_enable()
  Zone 3 interface enable/disable



## **MMC SDK: Payload power down**



### Board implementation:

- brd\_pp\_off()
  Start power-down sequence
- brd\_pp\_shdn\_complete()
  Check if power-down sequence
  is finished

## **MMC SDK: Sensor API**

### **MMC SDK: Sensor API**

#### Two kinds of IPMI sensors:

- "Compact" sensors (only 0 and 1)
- "Full" sensors (numerical value)

```
$ ipmitool -H mskmchhvf1.tech.lab -A NONE -B 0 -T 0x82 -t 0x7c -b 7 sensor
...
RTM MP 3V3 PG | 0x1  | discrete | 0x0000| na  | na  | na  | na  | na
RTM PP 12V PG | 0x0  | discrete | 0x0000| na  | na  | na  | na  | na
...
```

#### Two kinds of IPMI sensors:

- "Compact" sensors (only 0 and 1)
- "Full" sensors (numerical value)

Full sensors provide a numeric reading w/ engineering unit, range and thresholds

- Sensor type: Voltage, Current or Temperature
- Can be I2C sensor or STAMP analog input
- Callbacks for read fn and optional enable / postprocessing fn

### **MMC SDK: Sensor API**

Sensors supported by MMC STAMP SDK out of the box:

- ► STAMP analog inputs (built-in ADC of MCU), STAMP GPIOs
- External ADCs & temp. sensors (I2C)

### Sensors supported by MMC STAMP SDK out of the box:

- ▶ STAMP analog inputs (built-in ADC of MCU), STAMP GPIOs
- External ADCs & temp. sensors (I2C):
  - MAX6626 Local temp.
    - → Standard for RTMs
  - ► LM95214 Remote diode & local temp.
    - → Typical use: Measuring IC temperatures (e.g. of big FPGAs)
  - ADS101x 12bit ADC
    - → Typical use: Reading DC/DC temperature monitoring outputs
  - ► ADT7411 10bit ADC & local temp.
    - → Used on some FMCs, e.g. 4DSP FMC116

### Sensors supported by MMC STAMP SDK out of the box:

- ▶ STAMP analog inputs (built-in ADC of MCU), STAMP GPIOs
- External ADCs & temp. sensors (I2C):
  - MAX6626 Local temp.
    - → Standard for RTMs
  - LM95214 Remote diode & local temp.
    - → Typical use: Measuring IC temperatures (e.g. of big FPGAs)
  - ADS101x 12bit ADC
    - → Typical use: Reading DC/DC temperature monitoring outputs
  - ► ADT7411 10bit ADC & local temp.
    - ightarrow Used on some FMCs, e.g. 4DSP FMC116
- Power manager:
  - LTC297x (PMBUS) family supported
  - Built-in monitoring channels
  - Support for voltage, current and temperature monitoring

### Sensors supported by MMC STAMP SDK out of the box:

- > STAMP analog inputs (built-in ADC of MCU), STAMP GPIOs
- External ADCs & temp. sensors (I2C):
  - MAX6626 Local temp.
    - → Standard for RTMs
  - LM95214 Remote diode & local temp.
    - ightarrow Typical use: Measuring IC temperatures (e.g. of big FPGAs)
  - ADS101x 12bit ADC
    - → Typical use: Reading DC/DC temperature monitoring outputs
  - ► ADT7411 10bit ADC & local temp.
    - ightarrow Used on some FMCs, e.g. 4DSP FMC116
- Power manager:
  - LTC297x (PMBUS) family supported
  - Built-in monitoring channels
  - Support for voltage, current and temperature monitoring

Sensors are instantiated by the board impl. using a high-level configuration structure.



### **MMC SDK: Sensor API**

### Sensors supported by MMC STAMP SDK out of the box:

- ▶ STAMP analog inputs (built-in ADC of MCU), STAMP GPIOs
- External ADCs & temp. sensors (I2C):
  - MAX6626 Local temp.
    - → Standard for RTMs
  - LM95214 Remote diode & local temp.
    - → Typical use: Measuring IC temperatures (e.g. of big FPGAs)
  - ► ADS101x 12bit ADC
    - → Typical use: Reading DC/DC temperature monitoring outputs
  - ► ADT7411 10bit ADC & local temp.
    - $\rightarrow$  Used on some FMCs, e.g. 4DSP FMC116
- Power manager:
  - LTC297x (PMBUS) family supported
  - Built-in monitoring channels
  - Support for voltage, current and temperature monitoring

Sensors are instantiated by the board impl. using a high-level configuration structure.

Sensors that are not supported out of the box can be easily integrated by providing a driver function:

## MMC SDK: Custom console & IPMI commands



## MMC SDK: Custom commands (CLI & IPMI)

#### Custom CLI commands

- Command struct contains command name, argument list description, short help text
- Callback function signature:

```
void (*mmc_cli_func)(int argc, char** argv);
```

### **MMC SDK: Custom commands (CLI & IPMI)**

#### Custom CLI commands

- Command struct contains command name, argument list description, short help text
- Callback function signature:

```
void (*mmc_cli_func)(int argc, char** argv);
```

#### Custom IPMI commands

- Command struct contains netfn, command code, name and callback
- Callback function signature:

```
void (*ipmi_cmd_handler)(ipmi_call_t* call);
```

- Callback function accesses IPMI message payload
  - ► req\_read\_u8(),u16(),u32(): Reads unsigned little-endian value from IPMI request
  - rsp\_write\_u8(),u16(),u32(): Writes unsigned little-endian value to IPMI response
  - rsp\_finish(): Finishes a response, sets IPMI completion code



# SDK application example: DAMC-FMC1Z7IO

## **Example: MMC for DAMC-FMC1Z7IO**

How many LOC necessary to implement a MMC for a modern FMC carrier using the STAMP SDK?

```
$ cloc damc-fmc1z7io/src --by-file --quiet
                                                                    code
damc-fmc1z7io/src/board impl.c
damc-fmc1z7io/src/board cli.c
damc-fmc1z7io/src/board_payload.c 29
damc-fmc1z7io/src/board priv.c
damc-fmc1z7io/src/board priv.h
damc-fmc1z7io/src/board_eeprom.c
damc-fmc1z7io/src/board eeprom.h
damc-fmc1z7io/src/board cli.h
```

⇒ MMC implemented in less than 800 LOC total ※



# Thank you

https://techlab.desy.de

Deutsches Elektronen-Synchrotron DESY A Research Centre of the Helmholtz Association Notkestr. 85, 22607 Hamburg, Germany