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Introduction Motivation

Introduction

Many formal successfull studies are available on the market.
Loop tree duality [Capatti, Hirschi, Pelloni, Ruijl, 2021]

Unitarity cut techniques [Abreu, Ita, Page,Tschernow,2021]

pySecDec approach [Long Chen, Heinrich, Jones, Kerner, Klappert, Schlenk, 2021]

Auxiliary mass flow [Brønnum-Hansen, Melnikov, Quarroz, Chen-YuWang, 2021]

Solving a system of differential equations numerically [Lee, Smirnov, Smirnov,

2018], [Mandal, Zhao, 2019], [Moriello, 2019], [Bonciani, Del Duca, Frellesvig, Henn, Hidding, Maestri, Moriello,

Salvatori, Smirnov, 2019], [Hidding, 2020], [Abreu, Ita, Moriello, Page, Tschernow, Zeng 2020]

Many computational steps are automated. We are free to pick the
individual computer programs and glue them together.
The glue to connect the individuel tools for the full automation is still
missing.

In this talk we demonstrate one possible engineering attempt to automate
the differential equations approach.
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Introduction Motivation

Electroweak Precision Physics

Experiment Theory Main source

uncertainty

MW [MeV] 80385± 15 4 N2
fα

3, Nfα
2αs

sin2 θl
eff [10−5] 23153± 16 4.5 N2

fα
3, Nfα

2αs

ΓZ [MeV] 2495.2± 2.3 0.4 N2
fα

3, Nfα
2αs, αα2

s

σ0
had[pb] 41540± 37 6 N2

fα
3, Nfα

2αs

Rb = ΓbZ/Γhad
Z [10−5] 21629± 66 15 N2

fα
3, Nfα

2αs

The number of Z-bonos collected at LEP is 1.7× 107

Many pseudo observables are determined with high precision
Present theoretical predictions are accurate enough to fullfill
experimental demands
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Introduction Motivation

Overview Experiment Future

Experiment uncertainty Theory uncertainty

ILC CEPC FCC-ee Current Future

MW [MeV] 3-4 3 1 4 1

sin2 θl
eff [10−5] 1 2.3 0.6 4.5 1.5

ΓZ [MeV] 0.8 0.5 0.1 0.4 0.2

Rb[10−5] 14 17 6 15 7

The concepts for the new experiments will have new demands to the
theoreticle predictions
FCC-ee will generate 5× 1012 Z-bosons which is 105 more than
during the LEP times
The projection to the theory errors in the future assumes that the
missing corrections αα2

s , N2
fα

3, Nfα
2αs will become available
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Introduction Feynman integral

Samples of two-loop and three-loop Feynman integrals

We project all Feynman integrals to scalar integrals
We need to compute all Feynman integrals only up to the finite order
in ε = (4− d)/2, d the space time dimension
At the end we want to be able to compute all three-loop Feynman
integrals appearing in e.g. the Zb̄b vertex numerically with at least
eight significant digits of accuracy in physical kinematic regions
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Introduction Feynman integral

Parameters

The integrals depend on up to four dimensionless parameters{
M2
H

M2
Z

,
M2
W

M2
Z

,
m2
t

M2
Z

,
(s+ iδ)
M2
Z

}
|s=M2

Z
(1)

Many of them contain ultraviolet and infrared singularities, even
though the divergences cancel in the final result
Computations involve O(100) master integrals
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Introduction Feynman integral

Feynman integral

T (a1, . . . , aN ) =
∫ ( L∏

i=1
dd`i

)
1

P a1
1 P a2

2 · · ·P
aN
N

, N = L

2 (L+ 1) + LE

(2)

Pj = q2
j −m2

j , j = 1, . . . , N , are the inverse propagators
The momenta qj are linear combinations of the loop momenta `i,
i = 1, . . . , L for an L-loop integral, and external momenta pk,
k = 1, . . . , E for E + 1 external legs
The mj are the propagator masses
The aj are the (integer) propagator powers
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Introduction Feynman integral

Differential Equations

Each family of Feynman integrals T (a1, . . . , aN ) may be charcterized
through a system of differential equations [Kotikov, 1991], [Remiddi, 1997][Gehrmann,

Remiddi, 2000]

∂si
~f = Msi(si, ε)~f (3)

and a set of master integrals ~f
We take derivatives on kinematic invariants and masses denoted as si
in ~f
We express these derivatives again as a linear combination in terms of
the same master integrals with the help of integration-by-parts
identities [Chetyrkin, Tkachov, 1981]
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Caesar: Blueprint for Multi Loop Feynman Integral Computation

Caesar: Blueprint for Multi Loop Feynman Integral
Computation

Main developers of Caesar Martijn Hidding and J.U.
Caesar has to interface Kira [Klappert, Lange, Maierhöfer, Usovitsch, 2020], Reduze 2 [Von

Manteuffel, Studerus, 2012], pySecDec [Borowka et al., 2018] and DiffExp [Martijn Hidding, 2021].
For all the programs we have prepared templates which are filled
automatically for each problem individually
Kira is the backbone / major bottleneck of the Caesar
implementation - solves linear system of equations
Reduze 2 - finds candidates for a finite basis of master integrals
pySecDec computes the finite integrals in Euclidean regions -
boundary terms
DiffExp transports the Euclidean point to an arbitrary physical point
with well understood propagation of errors
Repeat the chain of tools for different Euclidean points to get an error
estimate
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Caesar: Blueprint for Multi Loop Feynman Integral Computation

One Possible Application of Caesar

All master integrals fi(...) are finite integrals (Reduze)
Master integrals fi(...) are evaluated numerically in Euclidean regions
(pySecDec)
System of differential equations is generated with (Kira)
Use series expansion of the system of differential equations to
transport from the Eucliden points to Minkowskien physical regions
(DiffExp) 11 / 17



Caesar: Blueprint for Multi Loop Feynman Integral Computation

Benefits of the Blueprint Caesar

We may set all masses to physical values — reductions with Kira
simplify enormously
Finite integrals in Euclidean regions — avoid the contour deformation
and the tedious resolving of the UV or IR divergences
Proof of concept available in other projects [Frellesvig, Hidding, Maestri, Moriello,

Salvatori, 2020], [Faela, Lange, Sch Ìönwalda, Steinhauser, 2021]
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Benchmark v3t181

Caesar: Integralfamily v3t181

In Euclidean regions (s,M2
W ,m

2
t )=(-2,4,16)

-> v3t181d=4−2ε[1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0] =
0.133952666444160183902749812 with 25 significant digits
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Benchmark v3t181

Caesar: Integralfamily v3t181

In physical regions (s,M2
W ,m

2
t )=(1,( 401925

4559382)2, (433000
227969)2)

-> v3t181d=4−2ε[1, 1, 1, 1, 1, 1, 1, 1, 1, -3, 0, 0] =
1.99999999981 +8.18*10−12 i

ε3

+9.87003934692 +18.84955592198 i
ε2

−26.50733688118 −41.19670709595 i
ε

+(2.29574696253 + 201.06880202144 i) +O (ε)
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Benchmark Bhabha

Caesar: Integralfamily Bhabha

In physical regions (s, t,m2
1,m

2
2)=(2,5,4,16)

-> bhabhad=6−2ε[1, 2, 1, 2, 1, 1, 1, 0, 0] =
(0.0002973066815 + 0.001542581913 i)
−(0.002805345908 − 0.003106827180 i) ε+O

(
ε2
)
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Summary

Outlook

Get a basis where the matrix of the system of differential equations is
linear in ε
-> DiffExp does order of magnitudes faster transport of the boundary

terms
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Summary

Conclusions

The first physics goals are already in 6 month reach
Important is the knowledge transfer and to get people motivated to
engineer other methods for practical applications
Strong computing resources are needed not only for the final product
but also for the development of the tools.
Without spending significant effort on simplification of the basis, we
can numerically solve the differential equations of non-trivial 3-loop
Feynman integrals.
By choosing the basis representatives to be finite integrals, we can
obtain precise numerical boundary conditions in the Euclidean region
using pySecDec.
We find that the precision of the boundary conditions in the
Euclidean region carries over to the physical region.
The process can be fully automated.
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