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- Kevin has been a Msci student for us at UCL for
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- We then show these results & should discuss the
implementations of each of these
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to minimise scattering from the electrons designed
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to be detected (minimising matter)

- The objective of the target design is to optimise
high-energy photon flux in the IP




- Vacuum chamber was .
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wintilator screen F1gure 4.3: Results of simulations of electrons incident on the scintillator screen as a function of
the gap between the vacuum chamber window and the screen, for various window materials and
thicknesses. In each case, a random sample of 500,000 beam electrons with an energy of 17.5 GeV
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Figure 4.5: The mean energy of electrons incident on the scintillator screen as a function of the gap
i chamber i between the vacuum chamber window and the screen, for all window setups. The mean result of
/ . five runs of 100,000 beam electrons with energy 17.5 GeV was taken.
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Bremsstrahlung Target

- Bremsstrahlung is used to generate a photon beam, intercepting the e- beam with a thin,
heavy metal target

- We saw no reason to change from Tungsten

- Below is a direct comparison to a CDR plot from Sasha
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Figure 5.12. Average number of bremsstrahlung photons produced in the energy range 7GeV < Ey < 16.5 GeV expected at
the LUXE IP as a function of thickness of the tungsten target from GEANT4 simulation of 50 bunches of XFEL.EU electron

beam of 16.5 GeV.
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Bremsstrahlung Target
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Figure 5.9: A linear plot of the number of high energy photons reaching the IP as a function

of target thickness shows a small peak at a thickness 600 yum. The graph shows some statistical
fluctuations due to relatively low statistics.




Bremsstrahlung Target

The bremsstrahlung target optimisation study has shown that:

¢ The maximum number of high energy photons per bunch crossing detected at the
IP is about 57,440 per BX, peaking at a thickness =~ 600 ym.

* This peak is relatively broad and flat, and thicknesses of between 500um and
1000 ym have a high energy photon count which falls within 2% of the maximum.

e If the maximum XFEL.EU beam energy can be used (17.5 GeV as opposed to 16.5
GeV), we can see an increase of in the high energy photon yield by a little over 20%.

 Moving the target closer to the IP has a large effect - a shift of a rather conservative
20 - 30 cm can increase the total count by a further 20%.

An optimal setup is thus proposed as an enhancement to the LUXE design. Doing so will
have the potential to increase the total number of high energy photons detected within
+25 um of the interaction point by a factor of around 2.5, without the need for altering
the current conceptual design in any major way. This optimisation is both realistic and
achievable. It would be very interesting to see real data from a working prototype as
the R&D project develops. The results of the two studies presented in this paper have
demonstrated that there is still great potential to enhance the experiment’s ability to
study an exciting physics regime that is not yet understood or explored.



Bremsstrahlung Target

- So why not change to maximise high-E photon flux?

- Thicker target = more multiple-radiation Brem events = more difficult to measure photon
spectrum using electron detectors

- This may be a secondary consideration compared to maximising flux
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Figure 5.5: Percentage of primary electrons interacting via bremsstrahlung in the target, as a
function of the target thickness. 8
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- Vacuum chamber was
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Figure 4.2: Electron energy and spatial distribution on the scintillator. The original setup was
used, without a vacuum chamber, and a beam of 100,000 electrons with an energy of 17.5 GeV.
Coordinates are local to the centre of the scintillation screen.
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Bremsstrahlung Region Vacuum Chamber
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Figure 4.7: Positrons detected in the scintillator in simulations of a bunch of half a million
17.5GeV electrons, for the original setup with no vacuum chamber (left) and with a 200 ym
Kapton window vacuum chamber (right) with no gap between the window and the scintillator.
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Bremsstrahlung Target

Simulated Bremsstrahlung Photon Energy Spectrum
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Figure 5.3: The photon energy spectrum for a target width of 800 yum shows that there is a slight
falling off in the production of the very highest energy photons.
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Figure 5.13: The effect of moving the bremsstrahlung target from its position 7.5 m from the IP,
as given in the CDR. Figures along the x—-axis are given as an offset from the original position
(Ocm).

15




Ceiling
<~—|P Mount

Optical
Cameras

Scintillator \\
Screen + Frame

Cameras

~——_ Movable
on Platform

Electron Source

+ Magnetic Field

‘\\\
Cherenkov

Detector




