LUXE Cerenkovs: Energy Resolution Requirement

Ruth

LUXE technical meeting

November 2021

Introduction

- electron energy with Cherenkovs: deflection x after dipole
- difficulty with performance estimate: whenever the geometry changes, segmentation required to get same resolution changes
\rightarrow need to re-run fastsim each time
- come up with a performance estimate using energy resolution directly
- Disclaimer: Nothing new here, just a more consistent way of expressing the requirement!

Energy vs. deflection

electron trajectory

- from geometry:

$$
x=R-\sqrt{R^{2}-z_{m}^{2}}+\frac{z_{m} z_{d}}{\sqrt{R^{2}-z_{m}^{2}}} \quad \text { where } \quad R=\frac{E}{B c} \quad \xrightarrow{\text { Taylor for } \mathrm{z}_{m} / \mathrm{R}=0} \quad x=\frac{z_{m}^{2}}{2 R}+\frac{z_{d} z_{m}}{R}+\mathcal{O}\left(\left(\frac{z_{m}}{R}\right)^{3}\right)
$$

- energy resolution as function of energy E, segmentation Δx and dipole characteristics:

$$
\frac{\sigma_{E}}{E}=\frac{\Delta x}{\frac{\sigma_{0}}{B c z_{m}\left(\frac{z_{m}}{2}+z_{d}\right)}} \cdot \sqrt{\sigma_{0}} \cdot E
$$

- linear behaviour in energy typical for dipole spectrometer

Segmentation, Dipole Geometry and σ_{0}

- current EDS Cherenkov spectrometer: $B=1.6 T, z_{d}=3.2 m, z_{m}=1.2 m$

Segmentation $\Delta x[\mathrm{~mm}]$	$\sigma_{0}($ for E in GeV)
10	0.0045
6	0.0027
4	0.0018
1	0.00046

Resolution in First Edge Region

Segmentation $\Delta \mathbf{x}[\mathrm{mm}]$	$\sigma_{0}($ for E in GeV$)$	$\sigma_{\mathrm{E}} / E(12 \mathrm{GeV})$	$\sigma_{\mathrm{E}} / E(15 \mathrm{GeV})$
10	0.0045	5.4%	6.9%
6	0.0027	3.3%	4.1%
4	0.0018	2.2%	2.7%
3	0.0014	1.6%	2.0%
1	0.00046	0.5%	0.7%

~ pink
~ green
~ blue
~ red

Reminder: Why we are interested in the kink

- Gaussian pulse: overlay of different true ξ leads to dramatic washing-out of edges

- to find edge position for $\xi_{\text {max }}$ find the upper "kink" of the edge

Finite Impulses Response Filter (FIR)

Finite Impulses Response Filter

- edge-like features in function $\mathbf{g}(\mathbf{x})$:
\rightarrow maxima in the convolution $\mathbf{R}(\mathbf{x})=\mathbf{h (x)} * \mathbf{g}(\mathbf{x})$
($\mathbf{h}(\mathbf{x})$ is a matched filter)
- $\mathbf{R}(\mathbf{x})$ is called the Response
- we have discrete data points $\mathbf{x}=\left(\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{i}}\right)$,
\rightarrow discretized Response $R_{d}(i)$:

$$
R_{d}(i)=\sum_{k=-N}^{N} h_{d}(k) \cdot g_{d}(i-k)
$$

- choice of filter h_{d} depends on the function $g(x)$
- Used here: First derivative of a Gaussian (FDOG)

FIR approximates first derivative
W

- thanks to filters more robust against statistical fluctuations!

Impact on Edge finding

- estimate the impact of limited resolution on the FIR response
- implementation: smear the true electron spectrum with a Gaussian kernel ($\mu=0, \sigma_{E} / E$ linear in E)

- kink (zero-crossing of response) more robust at higher xi (edge is more smeared out)
- some bias can be corrected
- 4 mm straws correspond \sim to blue curve
\rightarrow we can probably gain something by having several layers
- 1cm straws (~pink) are definitely too wide
- with this parametrization it's easy to estimate perfomance for new segmentation, dipole geometry etc!

Summary

- propose more general way of expressing requirements for Cherenkovs in terms of energy resolution
- relies purely on dipole parametrization, no need for "fastsim"
- finer details need to be determined with full simulation (e.g. sharing between channels, reco with several layers/overlapping channels)
- will add this in the technical note

