Generic Programming

Different ways to achieve similar things

Thomas Madlener
Sep 10, 2021

Generic programming

- Not going into too much detail here what is and what isn't generic
programming
- Usually: Keeping algorithms and their implementations separate from their
usage with dedicated types
- Here also: How to write code that can be easily reused
- Eg. sort, max, min should work with different types of “lists”
- Mainly focussing on some techniques that can be used to achieve things that
are useful for generic programming
- Focus on C++ with some examples in python

Sep 10, 2021 T.Madlener 1

C++ techniques towards generic programming

- Template classes and functions

- Virtual inheritance / classic polymorphism
- std::variant / sum types

- “Type erasure”

Sep 10, 2021 T.Madlener 2

Template functions and classes

- In C++ classes and functions can be “templatized”

- Provide a template with a yet unspecified type and let the compiler fill that
template with live (“instantiate”)

- Eg std::vector is a template class, it is a dynamic array of elements of
one type

Sep 10, 2021 T.Madlener

C++ templates vs. python

// a template function — = /\/quOWdJ

template<typename Animal>
std::string do_sound(const Animal& a) {

return a.sound(); def (animal):
} return a.sound()

struct Duck { class
std::string sound() const { return "quack"; } def (DE
}; return 'quack'’

struct Goose { class
std::string sound() const { return "honk"; } def (DE
s return 'honk'

struct Dog { class
std::string sound() const { return "woof"; } def ():
Pe return 'woof’

std::cout << do_sound(Duck()) << '\n'; print(do_sound(Duck()))
std::cout << do_sound(Goose()) << '\n'; print(do_sound(Goose()))
std::cout << do_sound(Dog()) << '\n'; print(do_sound(Dog()))

- NOTE: do_sound<Dog> and do_sound<Duck> are two different functions
even though the template only appears once
Sep 10, 2021 T.Madlener

https://godbolt.org/z/vrGqoWdj6

Polymorphism using virtual inheritance

- Typically used when there is a hierarchy of classes that all have similar
functionality

- “Types have the same interface”

- The exact details of how this functionality is implemented might be different
for specific types in this hierarchy

- Classical way of generic programming in object oriented programming

Sep 10, 2021 T.Madlener 5

C++ (virtual) inheritance vs. python

= /GTTd4Ths3

struct Animal {
virtual std::string sound() const = 0;

};

struct Duck : public Animal {
std::string sound() const override { return "quack"; }

b

struct Goose public Animal {
std::string sound() const override { return "honk"; }

b

Dog {
::string sound() const { return "woof"; }

// Use like this
std::vector<Animal*> animals = {new Duck(), new Goose()};
for (const auto* a : animals) {

std::cout << a->sound() << '\n';

}

// This DOES NOT WORK (fails to compile)
// Dog is not part of the hierarchy!
std::vector<Animal=> animals = {new Dog()};

T.Madlener

class 8
def ():
raise NotImplementedError

class (Animal):
def ()8
return 'quack'

class (Animal):
def (VE
return 'honk'

class
def ():
return 'woof’

animals = [Duck(), Goose()]
for a in animals:
print(a.sound())

This DOES WORK

Python's "duck typing" doesn't really care

about type hierarchies

for a in [Duck(), Goose(), Dog()]:
print(a.sound())

https://godbolt.org/z/GTTd4Ths3

Sum Types / std: :variant

- Also known as: “tagged union”
- A sum type holds a value that will at any given time be exactly one of an
arbitrary but fixed set of types
- std::variant has been standardized in C++17
- Standard compliant implementations also exist

Sep 10, 2021 T.Madlener 7

Example with C++ std: :variant

struct Duck {
std::string sound() const { return "quack";

iE
struct Goose {
std::string sound() const { return "honk"; }

15

using Animal = std::variant<Duck, Goose>;

std::string do_sound(const Animal& animal) {
return std::visit([](const auto§& a) {
return a.sound();
}, animal);

}

/ Use like this
std::vector<Animal> animals = {Duck(), Goose()};
for (const auto& a : animals) {

std::cout << do_sound(a) << '\n';

}

- Classesinastd::variant do not

have to be in a class hierarchy

- They have to offer all the

functionality that is used via the
variant

- sound in this case

- The canonical way to invoke any

function on the variant is via
std::visit
- Takes a callable (Visitor) that can
be called with all the types in the
std::variant

/156fqWKn9

Sep 10, 2021

T.Madlener

https://godbolt.org/z/156fqWKn9

Type erasure (in C++)

- A possible technique to make value semantics possible in C++
- Usedineg instd::functionand std: :any

Sep 10, 2021 T.Madlener 9

Type erasure implementation

class {
struct AnimalConcept {
// see next slide

b

template<typename T>
struct AnimalModel : public AnimalConcept {
// see next slide

b8

public:
std::string sound() const { return m_concept->sound(); }

Constructor from arbitrary types
template<typename T>
Animal(T&& t) :
m_concept(new AnimalModel<T>(std::forward<T>(t))) {}

~Animal() { delete m_concept; }

private:
AnimalConcept* m_concept;

}

- Type erasure works by defining the

type erased class which uses two
internal classes to which it
delegates the work

- It combines virtual inheritance and

templated classes

- Fully functional implementation

needs a few more things!

- Mainly for resource management
- Make the type erased class behave
more like a value

Sep 10, 2021

T.Madlener 10

Type erasure implementation - internal classes

cl

ass {
struct AnimalConcept {
virtual std::string sound() const = 0;

k;

template<typename T>
struct AnimalModel : public AnimalConcept {
std::string sound() const override {
return m_instance.sound()

g

template<typename U>
AnimalModel(U&& u) :
m_instance(std::forward<U>(u)) {}
private:
T m_instance;

b

/ the rest of the implementation from previous

};

- Concept defines the interface

- Model implements that interface
and holds the actual value
- Have to “say it three times”, because
every function needs:
- a declaration in the concept,
- an implementation in the model,
- and a call in the type erased class

slide

Sep 10, 2021

T.Madlener 1

Type erasure usage

struct Duck {

std::string sound() const { return "quack’; } - Once everything is in place usage is
}tt e ¢ almost python like ;)
, Srdistring sound0) const {return fhonks - Still checked at compile time if all
R the types that are used actually
::string sound() const { return "wroon'; } fulfill all the functionality
5 T diF it meei CoEe S - Could restrict the constructor to
i N L R make this more strict if necessary
et 44 0] £ - & /94x7nYaje

Sep 10, 2021 T.Madlener 12

https://godbolt.org/z/94x7nYaje

