
Agile Software
Development with

Scrum

1

Agile Basics

2

Introduction
Myths and Words of Wisdom

3

Survival and Change

“It is not the strongest of the
species that survive, nor the
most intelligent, but the one
most responsive to change.”

Charles Darwin

4

Simple vs. Complex
Processes

“Simple, clear purpose and
principles give rise to complex,
intelligent behavior. Complex
rules and regulations give rise

to simple, stupid behavior.”
Dee Hock, founder of VISA

5

The Myths and Realities of
Agile Software Development

Myths

No documentation

No reporting

Undisciplined & chaotic

No archtecture

No analysis

No planning

Not predictable

Not scalable

Just a fashion

Is a silver bullet

Fixed price not possible

Reality

Documentation is right-sized

Detailed and realistic reporting

Structured and disciplined

Emergent architecture

“Just-in-time” analysis

Long and short range planning

Transparency!

Works with large projects as well

It’s mainstream now

There are no silver bullets!

Does fixed price really work anyway?

6

Traditional Development

7

The target is not clear at the
start

Traditional Development

7

Traditional

The target is not clear at the
start

Traditional Development

7

Traditional

The target is not clear at the
start

The real target is
somewhere else

Traditional Development

7

Traditional

The target is not clear at the
start

The real target is
somewhere else

Change
Requests

Traditional Development

7

Agile Development

8

Agile Development

The target is not clear at the
start

8

Agile Development

The real target is
somewhere else

The target is not clear at the
start

8

Agile Development

Traditional

The real target is
somewhere else

The target is not clear at the
start

8

Agile Development

Traditional

The real target is
somewhere else

The target is not clear at the
start

8

Agile Development

Traditional

Evolutionary:
“Inpect & Adapt”

The real target is
somewhere else

The target is not clear at the
start

8

Agile Development

Traditional

Evolutionary:
“Inpect & Adapt”

The real target is
somewhere else

The target is not clear at the
start

8

Agile Development

Traditional

Evolutionary:
“Inpect & Adapt”

The real target is
somewhere else

The target is not clear at the
start

8

Agile Development

Traditional

Evolutionary:
“Inpect & Adapt”

The real target is
somewhere else

The target is not clear at the
start

8

Agile Development

Traditional

Evolutionary:
“Inpect & Adapt”

The real target is
somewhere else

The target is not clear at the
start

8

The Agile Manifesto

Processes and toolsIndividuals and interactions over

Following a planResponding to change

Comprehensive
documentationRunning software

Contract negotiationCustomer collaboration

over

over

over

That is, while there is value in the items on the
right, we value the items on the left more

9

The Agile Manifesto
Principles

Our highest priority is to satisfy the customer through early and continuous delivery of valuable
software.

Welcome changing requirements, even late in development. Agile processes harness change for the
customer's competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of months, with a preference
to the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and support they need, and
trust them to get the job done.

The most efficient and effective method of conveying information to and within a development team is
face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and users should be
able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity--the art of maximizing the amount of work not done--is essential.

The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its
behavior accordingly.

10

Technology

R
e

q
u

ir
e

m
e

n
ts

C
lo

s
e

 t
o

C
e

rt
a

in
ty

F
a

r
fr

o
m

C
e

rt
a

in
ty

Far from

Agreement

Close to

Agreement

Simple

Complicated

Complex

Anarchy

In Which Region is Almost All Software
Development?

Source: Strategic Management and
Organizational Dynamics by Ralph Stacey in
Agile Software Development with Scrum
by Ken Schwaber and Mike Beedle.

11

The Cynefin Framework

Probe
Sense
Respond

Sense
Act
Respond

Sense
Categorise
Respond

Act
Sense
Respond

Quelle: Wikipedia

12

Scrum
A Framework for the Development of
Products in a Complex Environment

13

The Product Owner is responsible for creating and prioritizing a list of open
features. This is the Product Backlog, a complete but dynamic to-do list for the
project.

Before each Sprint, the team decides in a Sprint Planning meeting, how many
of the highest prioritized features they can deliver during the Sprint. The team
decides what tasks are necessary and enters them into the Sprint Backlog.

During the Sprint, the team synchronizes in a Daily Scrum meeting and follow
progress in the burn down chart.

The ScrumMaster coaches the team, removes impediments and ensures that
the team is able to work effectively.

During the Sprint, valuable functionality is developed and a potentially
shippable product increment created, which is demonstrated by the team
during a Sprint Review meeting.

At the end of every Sprint, the Scrum Team holds a Retrospective and
identifies how they can work together more effectively during the next Sprint.

Scrum in 5 Minutes

14

The Essentials

Sprint

An iteration with a fixed
duration

3 Meetings

Sprint Planning

Sprint Review

Daily Scrum

3 Documents

Product Backlog

Sprint Backlog

Sprint Burn Down Chart

3 Roles in the Scrum Team

Product Owner

ScrumMaster

Team

15

!"
!#

$%
%#

$%
%!

!"
""

!"
"&

!"
"#

!"
"%

!"
''

!"
'(

!"
)'

!"
*&

!"#$%#&$%#&$'()*+,-$.#/#0)12#3-$452#
$67)/839$-"#$:,(+2$*)&3;#0*<

!"
*'

7538=#>-)$=)($?980#$:)=-&5(#$.#/#0)12#3-

Wir enthüllen bessere Wege zur Softwareentwicklung,
indem wir Software entwickeln und Anderen helfen, dies zu tun.

Durch diese Arbeit haben wir Folgendes schätzen gelernt:

Individuen und Interaktionen mehr als Prozesse und Tools
Funktionierende Software mehr als umfassende Dokumentation
Zusammenarbeit mit Kunden mehr als Vertragsverhandlungen

Reaktion auf Änderungen mehr als einen Plan zu befolgen

Obwohl auch die Dinge auf der Rechten ihren Wert
haben, schätzen wir die auf Linken höher ein.

!"
*#

!"#$@8(>-$:,(+2$5-$A5>#0

$%
%'

The Roots of Scrum. Jens Korte, Syndato

16

Cancel

Gift-wrap

Product
Backlog

Return

source:
Mountain Goat Software, LLC

Scrum Flow

17

Cancel

Gift-wrap

Sprint
2-4 Weeks

Product
Backlog

Return

source:
Mountain Goat Software, LLC

Scrum Flow

17

Cancel

Gift-wrap

Sprint
2-4 Weeks

Return

Sprint Goal

Product
Backlog source:

Mountain Goat Software, LLC

Scrum Flow

17

Cancel

Gift-wrap

Sprint
2-4 Weeks

Return

Sprint Goal

Sprint Backlog

Product
Backlog source:

Mountain Goat Software, LLC

Scrum Flow

17

Cancel

Gift-wrap

Sprint
2-4 Weeks

Return

Sprint Goal

Sprint Backlog Potentially shippable
product increment

Product
Backlog source:

Mountain Goat Software, LLC

Scrum Flow

17

Cancel

Gift-wrap

Sprint
2-4 Weeks

Return

Sprint Goal

Sprint Backlog Potentially shippable
product increment

Product
Backlog

Voucher

source:
Mountain Goat Software, LLC

Scrum Flow

17

Gift-wrap

Voucher

Cancel

Sprint
2-4 Weeks

Return

Sprint Goal

Sprint Backlog Potentially shippable
product increment

Product
Backlog source:

Mountain Goat Software, LLC

Scrum Flow

17

Gift-wrap

Voucher

Cancel

Sprint
2-4 Weeks

Return

Sprint Goal

Sprint Backlog Potentially shippable
product increment

Product
Backlog

24 Hours

source:
Mountain Goat Software, LLC

Scrum Flow

17

No Changes during a
Sprint

New Requirements

18

Quelle: David Harvey

19

Automated Unit
Testing and Test
Driven Development

20

Automated Unit
Testing

21

Unit Testing - Principles

Test everything that could break

Test everything that does break

When a new bug is discovered, we first of all
write a test that reproduces the bug

Ensures that the bug will not return

Run the tests before every check in

22

What Should We Test?

Are all of the results correct?

Are the boundary values correct?

Can we check the results through alternative
means (independent verification of the
algorithm)?

Can we force error conditions?

23

Good Tests - “A TRIP”
(Hunt & Davis)

Automatic

Thorough

Repeatable

Independent

Professional

24

Test Driven
Development

25

TDD = Documentation
and Design

“The act of writing a unit test is more an act of
design than of verification. It is also more an act of
documentation than of verification. The act of
writing a unit test closes a remarkable number of
feedback loops, the least of which is the one

pertaining to verification of function”
Robert C. Martin

26

The Three Rules of TDD

1. You are not allowed to write any production
code unless it is to make a failing unit test
pass.

2. You are not allowed to write any more of a
unit test than is sufficient to fail; and
compilation failures are failures.

3. You are not allowed to write any more
production code than is sufficient to pass
the one failing unit test.

Robert C. Martin

27

Test Driven Development

Test Driven Development =

Test First Development +
Refactoring

28

Advice
(Frank Westphal)

Write test before you write the code, to make sure that the code is easy to test.

The same quality criteria should apply to tests and production code: self-
documenting, no duplicated code and as simple as possible.

Don’t test too much in each test method. Just one function/method in
combination with one boundary condition at a time .

Capture ideas straight-away, don’t lose them (write a test!)

Organize test classes effectively (suites, fixtures etc.)

To test effecitvely, test cases must be executable in isolation from one antoher.
Don’t make assumptions about execution order. If there are some tests that are
dependent on one another, combine them into a test case.

Try to execute all unit tests after every compile.

Keep at eye on return on investment when you are writing tests. Write only tests
for which the effort is worthwhile.

Refactor your test code as often and carefully as all other code.

29

Reading
Recommendations

Pragmatic Unit Testing in Java with JUnit

Andew Hunt, David Thomas, The Pragmatic
Programmers

Softwaretests mit JUnit

Johannes Link, Dpunkt Verlag

Testgetriebene Entwicklung mit JUnit und FIT

Frank Westphal, Dpunkt Verlag

30

SOLID

Single Responsibility Principle

An object should have only a single responsibility

Open Closed Principle

Software should be open for extension, but closed for modification

Liskov Substitution Principle

Objects should be replaceable with instances of their subtypes without altering the correctness
of that program

Interface Segregation Principle

Many client specific interfaces are better than one general purpose interface

Dependency Inversion Principle

Depend upon Abstractions. Do not depend upon concretions

Source: wikipedia

31

http://en.wikipedia.org/wiki/Liskov_substitution_principle
http://en.wikipedia.org/wiki/Liskov_substitution_principle

Code Craftsmanship

32

craftsmanship
crafts·man n. (pl. -men) a person who is skilled in a
particular craft. an artist. crafts·man·ship n.

33

The Boy
Scout Rule

Leave the
campground
cleaner than you
found it.

34

35

Clean Code and
Software Craftsmanship

Craftsmanship over Execution

Most software development teams
execute, but they don’t take care.
We value execution, but we value
craftsmanship more.

Robert Martin

36

Continuous Self
Improvement

there is just one deadly
sin:

standing still
37

Clean Code Developer

38

Agile Skills

39

Quelle: David Harvey

40

Keep the Rhythm
Retrospective

For you and your team

Identify impediments to improvement

Sprint Review

Report constructively and transparently

Daily Scrum

Keep synchronized with your team

41

What is Your Contribution?

Stand up and say something

Be courageous

Recognize when something isn’t right
with your team

Practice!

Take part in the agile community

42

Appendix
Bibliography, Copyright, Attribution,
Community and Contact Information

43

Bibliography

Coens, T. & Jenkins, M., 2002. Abolishing Performance Appraisals: Why They Backfire and What to Do Instead, Berrett-
Koehler Publishers.

Cohn, M., 2004. User Stories Applied: For Agile Software Development, Addison Wesley.

Cohn, M., 2005. Agile Estimating and Planning, Prentice Hall.

Cohn, M., 2009. Succeeding with Agile - Software Development using Scrum, Addison Wesley.

Derby, E. & Larsen, D., 2006. Agile Retrospectives: Making Good Teams Great, The Pragmatic Bookshelf.

Feathers, M., 2007. Working Effectively with Legacy Code, Prentice Hall PTR.

Freeman, S. & Pryce, N., 2009. Growing Object-Oriented Software, Guided By Tests, Addison Wesley.

Gloger, B., 2008. Scrum. Produkte zuverlässig und schnell entwickeln, Hanser.

Grenning, J.W., 2010. Test Driven Development for Embedded C, The Pragmatic Bookshelf.

Martin, R.C., 2008. Clean Code: A Handbook of Agile Software Craftsmanship, Prentice Hall PTR.

Pichler, R., 2007. Scrum - Agiles Projektmanagement erfolgreich einsetzen, dpunkt.verlag.

Takeuchi, H. & Nonaka, I., 1986. The new new product development game, Harvard Business Review, January-February 1986.

Westphal, F., 2005. Testgetriebene Entwicklung mit JUnit & FIT, dpunkt.verlag.

44

The Scrum Alliance

http://scrumalliance.org

A not-for-profit corporation that encourages the adoption of Scrum
and licenses trainers and registered education providers (such as
ScrumCenter GmbH and its founders) to deliver various training
programmes, including:

Certified ScrumMaster (CSM)

Certified Scrum Product Owner (CSPO)

Certified Scrum Developer (CSD)

Membership is open to CSMs, CSPOs and CSDs

Regular “Scrum Gathering” conferences worldwide

45

http://scrumalliance.org
http://scrumalliance.org

Selected Scrum User
Groups

Agile Saxony - Scrum User Group Saxony

http://agilesaxony.org

Regular meetings in Dresden and Leipzig

Agile Tuesday - Scrum User Group Munich

http://agiletuesday.org

Meets regularly (normally on the second Tuesday of each month)

Scrum User Group Germany

http://scrumaufdeutsch.pbworks.com/

German speaking user group covering D-A-CH

Annual 1-day Open-Space conference

46

http://agilesaxony.org
http://agilesaxony.org
http://agiletuesday.org
http://agiletuesday.org
http://scrumaufdeutsch.pbworks.com
http://scrumaufdeutsch.pbworks.com

Copyright and Attribution

Except where otherwise noted:

© 2010 Simon Roberts and Christoph Mathis, all rights reserved.

The Scrum flow animation is taken from
Mike Cohn: A redistributable introduction to Scrum
http://www.mountaingoatsoftware.com/scrum-a-presentation

47

http://www.mountaingoatsoftware.com/scrum-a-presentation
http://www.mountaingoatsoftware.com/scrum-a-presentation

Contact Information

Simon Roberts
simon.roberts@scrumcenter.com

mobile +49 160 8082012, twitter @srob

ScrumCenter GmbH
http://scrumcenter.com

tel. +49 89 5003520

48

mailto:simon.roberts@scrumcenter.com?subject=Agile%20Software%20Development%20with%20Scrum
mailto:simon.roberts@scrumcenter.com?subject=Agile%20Software%20Development%20with%20Scrum
http://scrumcenter.com
http://scrumcenter.com

